Short Antiangiogenic MMP-2 Peptide-Decorated Conjugated Linoleic Acid-Coated SPIONs for Targeted Paclitaxel Delivery in an A549 Cell Xenograft Mouse Tumor Model

Lindokuhle M. Ngema, Samson A. Adeyemi, Thashree Marimuthu, Philemon N. Ubanako, Wilfred Ngwa, Yahya E. Choonara

Research output: Contribution to journalArticlepeer-review

Abstract

The design of targeted antiangiogenic nanovectors for the delivery of anticancer drugs presents a viable approach for effective management of nonsmall-cell lung carcinoma (NSCLC). Herein, we report on the fabrication of a targeted delivery nanosystem for paclitaxel (PTX) functionalized with a short antimatrix metalloproteinase 2 (MMP-2) CTT peptide for selective MMP-2 targeting and effective antitumor activity in NSCLC. The fabrication of the targeted nanosystem (CLA-coated PTX-SPIONs@CTT) involved coating of superparamagnetic iron-oxide nanoparticles (SPIONs) with conjugated linoleic acid (CLA) via chemisorption, onto which PTX was adsorbed, and subsequent surface functionalization with carboxylic acid groups for conjugation of the CTT peptide. CLA-coated PTX SPIONs@CTT had a mean particle size of 99.4 nm and a PTX loading efficiency of ∼98.5%. The nanosystem exhibited a site-specific in vitro PTX release and a marked antiproliferative action on lung adenocarcinoma cells. The CTT-functionalized nanosystem significantly inhibited MMP-2 secretion by almost 70% from endothelial cells, indicating specific anti-MMP-2 activity. Treatment of tumor-bearing mice with subcutaneous injection of the CTT-functionalized nanosystem resulted in 69.7% tumor inhibition rate, and the administration of the nanosystem subcutaneously prolonged the half-life of PTX and circulation time in vivo. As such, CLA-coated PTX-SPIONs@CTT presents with potential for application as a targeted nanomedicine in NSCLC management.

Original languageEnglish (US)
Pages (from-to)700-713
Number of pages14
JournalACS Omega
Volume9
Issue number1
DOIs
StatePublished - Jan 9 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Short Antiangiogenic MMP-2 Peptide-Decorated Conjugated Linoleic Acid-Coated SPIONs for Targeted Paclitaxel Delivery in an A549 Cell Xenograft Mouse Tumor Model'. Together they form a unique fingerprint.

Cite this