Abstract
Sheared rotation dynamics are widely believed to have significant influence on experimentally-observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially-sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, which includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E×B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry.
Original language | English (US) |
---|---|
Pages (from-to) | 1815-1821 |
Number of pages | 7 |
Journal | Physics of Plasmas |
Volume | 5 |
Issue number | 5 PART 1 |
DOIs | |
State | Published - May 1998 |
Externally published | Yes |
ASJC Scopus subject areas
- Condensed Matter Physics