Sensory error drives fine motor adjustment

Huimin Wang, Yuxuan Zhou, Huanhuan Li, Cynthia F. Moss, Xingxing Li, Jinhong Luo

Research output: Contribution to journalArticlepeer-review

Abstract

Fine audiovocal control is a hallmark of human speech production and depends on precisely coordinated muscle activity guided by sensory feedback. Little is known about shared audiovocal mechanisms between humans and other mammals. We hypothesized that real-time audiovocal control in bat echolocation uses the same computational principles as human speech. To test the prediction of this hypothesis, we applied state feedback control (SFC) theory to the analysis of call frequency adjustments in the echolocating bat, Hipposideros armiger. This model organism exhibits well-developed audiovocal control to sense its surroundings via echolocation. Our experimental paradigm was analogous to one implemented in human subjects. We measured the bats’ vocal responses to spectrally altered echolocation calls. Individual bats exhibited highly distinct patterns of vocal compensation to these altered calls. Our findings mirror typical observations of speech control in humans listening to spectrally altered speech. Using mathematical modeling, we determined that the same computational principles of SFC apply to bat echolocation and human speech, confirming the prediction of our hypothesis.

Original languageEnglish (US)
Article numbere2201275119
JournalProceedings of the National Academy of Sciences of the United States of America
Volume119
Issue number27
DOIs
StatePublished - Jul 5 2022

Keywords

  • auditory feedback
  • echolocation
  • human speech
  • Kalman filter
  • vocal production control

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Sensory error drives fine motor adjustment'. Together they form a unique fingerprint.

Cite this