TY - JOUR
T1 - Selective KCNQ2/3 Potassium Channel Opener ICA-069673 Inhibits Excitability in Mouse Vagal Sensory Neurons
AU - Sun, Hui
AU - Undem, Bradley J.
N1 - Publisher Copyright:
© 2024 by The American Society for Pharmacology and Experimental Therapeutics.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - Heightened excitability of vagal sensory neurons in inflammatory visceral diseases contributes to unproductive and difficult-totreat neuronally based symptoms such as visceral pain and dysfunction. Identification of targets and modulators capable of regulating the excitability of vagal sensory neurons may lead to novel therapeutic options. KCNQ1-KCNQ5 genes encode KV7.1-7.5 potassium channel α-subunits. Homotetrameric or heterotetrameric KV7.2-7.5 channels can generate the so-called M-current (IM) known to decrease the excitability of neurons including visceral sensory neurons. This study aimed to address the hypothesis that KV7.2/7.3 channels are key regulators of vagal sensory neuron excitability by evaluating the effects of KCNQ2/3-selective activator, ICA-069673, on IM in mouse nodose neurons and determining its effects on excitability and action potential firings using patch clamp technique. The results showed that ICA-069673 enhanced IM density, accelerated the activation, and delayed the deactivation of M-channels in a concentration-dependent manner. ICA-069673 negatively shifted the voltage-dependent activation of IM and increased the maximal conductance. Consistent with its effects on IM, ICA-069673 induced a marked hyperpolarization of resting potential and reduced the input resistance. The hyperpolarizing effect wasmore pronounced in partially depolarized neurons. Moreover, ICA-069673 caused a 3-fold increase in the minimal amount of depolarizing current needed to evoke an action potential, and significantly limited the action potential firings in response to sustained suprathreshold stimulations. ICA-069673 had no effect on membrane currents when Kcnq2 and Kcnq3 were deleted. These results indicate that opening KCNQ2/3-mediatedM-channels is sufficient to suppress the excitability and enhance spike accommodation in vagal visceral sensory neurons.
AB - Heightened excitability of vagal sensory neurons in inflammatory visceral diseases contributes to unproductive and difficult-totreat neuronally based symptoms such as visceral pain and dysfunction. Identification of targets and modulators capable of regulating the excitability of vagal sensory neurons may lead to novel therapeutic options. KCNQ1-KCNQ5 genes encode KV7.1-7.5 potassium channel α-subunits. Homotetrameric or heterotetrameric KV7.2-7.5 channels can generate the so-called M-current (IM) known to decrease the excitability of neurons including visceral sensory neurons. This study aimed to address the hypothesis that KV7.2/7.3 channels are key regulators of vagal sensory neuron excitability by evaluating the effects of KCNQ2/3-selective activator, ICA-069673, on IM in mouse nodose neurons and determining its effects on excitability and action potential firings using patch clamp technique. The results showed that ICA-069673 enhanced IM density, accelerated the activation, and delayed the deactivation of M-channels in a concentration-dependent manner. ICA-069673 negatively shifted the voltage-dependent activation of IM and increased the maximal conductance. Consistent with its effects on IM, ICA-069673 induced a marked hyperpolarization of resting potential and reduced the input resistance. The hyperpolarizing effect wasmore pronounced in partially depolarized neurons. Moreover, ICA-069673 caused a 3-fold increase in the minimal amount of depolarizing current needed to evoke an action potential, and significantly limited the action potential firings in response to sustained suprathreshold stimulations. ICA-069673 had no effect on membrane currents when Kcnq2 and Kcnq3 were deleted. These results indicate that opening KCNQ2/3-mediatedM-channels is sufficient to suppress the excitability and enhance spike accommodation in vagal visceral sensory neurons.
UR - http://www.scopus.com/inward/record.url?scp=85188029110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85188029110&partnerID=8YFLogxK
U2 - 10.1124/jpet.123.001959
DO - 10.1124/jpet.123.001959
M3 - Article
C2 - 38290975
AN - SCOPUS:85188029110
SN - 0022-3565
VL - 389
SP - 118
EP - 127
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 1
ER -