TY - JOUR
T1 - Selective infarct zone imaging with intravenous acoustically activated droplets
AU - Choudhury, Songita A.
AU - Xie, Feng
AU - Kutty, Shelby
AU - Lof, John
AU - Stolze, Elizabeth
AU - Porter, Thomas R.
N1 - Publisher Copyright:
© 2018 Choudhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/12
Y1 - 2018/12
N2 - Background Microbubbles (MB) can be compressed to nanometer-sized droplets and reactivated with diagnostic ultrasound; these reactivated MB possess unique imaging characteristics. Objective We hypothesized that droplets formed from compressing Definity MB may be used for infarct-enhancement imaging. Methods Fourteen rats underwent ligation of their left anterior descending (LAD) artery, and five pigs underwent 90 minute balloon occlusions of their mid LAD. At 48 hours in rats, transthoracic ultrasound was performed at two and four minutes following 200 μL intravenous injections (IVI) of Definity droplets (DD), at which point the MI was increased from 0.5 to 1.5 to assess for a transient contrast enhancement zone (TEZ) within akinetic segments. In pigs, 1.0 mL injections of DD were administered and low frame rate (triggered end systolic or 10 Hz) imaging 2–4 minutes post iVI to selectively activate and image the infarct zone (IZ). Infarct size was defined by delayed enhancement magnetic resonance imaging (DE-MRI) and post-mortem staining (TTC). Results Increasing MI to 1.5 (at two or four minutes after IVI) resulted in a TEZ in rats, which correlated with infarct size (r = 0.94, p<0.001). A TEZ was not seen at 2–4 minutes in any rat (n = 8) following Definity MB injections. Fluorescent staining confirmed DD presence within the infarct zone 10 minutes after intravenous injection. In pigs, selective enhancement within the IZ was achieved by using a low frame rate single pulse harmonic mode; IZ size matched the location seen with DE-MRI and correlated with TTC defect size (r = 0.90, p<0.05). Conclusion DD formulated from commercially available MB can be acoustically activated for selective infarct enhancement imaging.
AB - Background Microbubbles (MB) can be compressed to nanometer-sized droplets and reactivated with diagnostic ultrasound; these reactivated MB possess unique imaging characteristics. Objective We hypothesized that droplets formed from compressing Definity MB may be used for infarct-enhancement imaging. Methods Fourteen rats underwent ligation of their left anterior descending (LAD) artery, and five pigs underwent 90 minute balloon occlusions of their mid LAD. At 48 hours in rats, transthoracic ultrasound was performed at two and four minutes following 200 μL intravenous injections (IVI) of Definity droplets (DD), at which point the MI was increased from 0.5 to 1.5 to assess for a transient contrast enhancement zone (TEZ) within akinetic segments. In pigs, 1.0 mL injections of DD were administered and low frame rate (triggered end systolic or 10 Hz) imaging 2–4 minutes post iVI to selectively activate and image the infarct zone (IZ). Infarct size was defined by delayed enhancement magnetic resonance imaging (DE-MRI) and post-mortem staining (TTC). Results Increasing MI to 1.5 (at two or four minutes after IVI) resulted in a TEZ in rats, which correlated with infarct size (r = 0.94, p<0.001). A TEZ was not seen at 2–4 minutes in any rat (n = 8) following Definity MB injections. Fluorescent staining confirmed DD presence within the infarct zone 10 minutes after intravenous injection. In pigs, selective enhancement within the IZ was achieved by using a low frame rate single pulse harmonic mode; IZ size matched the location seen with DE-MRI and correlated with TTC defect size (r = 0.90, p<0.05). Conclusion DD formulated from commercially available MB can be acoustically activated for selective infarct enhancement imaging.
UR - http://www.scopus.com/inward/record.url?scp=85059269691&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059269691&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0207486
DO - 10.1371/journal.pone.0207486
M3 - Article
C2 - 30551125
AN - SCOPUS:85059269691
SN - 1932-6203
VL - 13
JO - PLoS One
JF - PLoS One
IS - 12
M1 - e0207486
ER -