TY - JOUR
T1 - Safety and Efficacy of Stereotactic Ablative Radiation Therapy for Renal Cell Carcinoma Extracranial Metastases
AU - Wang, Chiachien Jake
AU - Christie, Alana
AU - Lin, Mu Han
AU - Jung, Matthew
AU - Weix, Derek
AU - Huelsmann, Lorel
AU - Kuhn, Kristin
AU - Meyer, Jeffrey
AU - Desai, Neil
AU - Kim, D. W.Nathan
AU - Pedrosa, Ivan
AU - Margulis, Vitaly
AU - Cadeddu, Jeffrey
AU - Sagalowsky, Arthur
AU - Gahan, Jeffrey
AU - Laine, Aaron
AU - Xie, Xian Jin
AU - Choy, Hak
AU - Brugarolas, James
AU - Timmerman, Robert
AU - Hannan, Raquibul
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Purpose Renal cell carcinoma is refractory to conventional radiation therapy but responds to higher doses per fraction. However, the dosimetric data and clinical factors affecting local control (LC) are largely unknown. We aimed to evaluate the safety and efficacy of stereotactic ablative radiation therapy (SAbR) for extracranial renal cell carcinoma metastases. Methods and Materials We reviewed 175 metastatic lesions from 84 patients treated with SAbR between 2005 and 2015. LC and toxicity after SAbR were assessed with Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Predictors of local failure were analyzed with χ2, Kaplan-Meier, and log-rank tests. Results In most cases (74%), SAbR was delivered with total doses of 40 to 60 Gy, 30 to 54 Gy, and 20 to 40 Gy in 5 fractions, 3 fractions, and a single fraction, respectively. The median biologically effective dose (BED) using the universal survival model was 134.5 Gy. The 1-year LC rate after SAbR was 91.2% (95% confidence interval, 84.9%-95.0%; median follow-up, 16.7 months). Local failures were associated with prior radiation therapy (hazard ratio [HR], 10.49; P<.0001), palliative-intent radiation therapy (HR, 4.63; P=.0189), spinal location (HR, 5.36; P=.0041), previous systemic therapy status (0-1 vs >1; HR, 3.52; P=.0217), and BED <115 Gy (HR, 3.45; P=.0254). Dose received by 99% of the target volume was the strongest dosimetric predictor for LC. Upon multivariate analysis, dose received by 99% of the target volume greater than BED of 98.7 Gy and systemic therapy status remained significant (HR, 0.12 and 3.64, with P=.0014 and P=.0472, respectively). Acute and late grade 3 toxicities attributed to SAbR were observed in 3 patients (1.7%) and 5 patients (2.9%), respectively. Conclusions SAbR demonstrated excellent LC of metastatic renal cell carcinoma with a favorable safety profile when an adequate dose and coverage were applied. Multimodality treatment with surgery should be considered for reirradiation or vertebral metastasis. A higher radiation dose may be required in patients who received previous systemic therapies.
AB - Purpose Renal cell carcinoma is refractory to conventional radiation therapy but responds to higher doses per fraction. However, the dosimetric data and clinical factors affecting local control (LC) are largely unknown. We aimed to evaluate the safety and efficacy of stereotactic ablative radiation therapy (SAbR) for extracranial renal cell carcinoma metastases. Methods and Materials We reviewed 175 metastatic lesions from 84 patients treated with SAbR between 2005 and 2015. LC and toxicity after SAbR were assessed with Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Predictors of local failure were analyzed with χ2, Kaplan-Meier, and log-rank tests. Results In most cases (74%), SAbR was delivered with total doses of 40 to 60 Gy, 30 to 54 Gy, and 20 to 40 Gy in 5 fractions, 3 fractions, and a single fraction, respectively. The median biologically effective dose (BED) using the universal survival model was 134.5 Gy. The 1-year LC rate after SAbR was 91.2% (95% confidence interval, 84.9%-95.0%; median follow-up, 16.7 months). Local failures were associated with prior radiation therapy (hazard ratio [HR], 10.49; P<.0001), palliative-intent radiation therapy (HR, 4.63; P=.0189), spinal location (HR, 5.36; P=.0041), previous systemic therapy status (0-1 vs >1; HR, 3.52; P=.0217), and BED <115 Gy (HR, 3.45; P=.0254). Dose received by 99% of the target volume was the strongest dosimetric predictor for LC. Upon multivariate analysis, dose received by 99% of the target volume greater than BED of 98.7 Gy and systemic therapy status remained significant (HR, 0.12 and 3.64, with P=.0014 and P=.0472, respectively). Acute and late grade 3 toxicities attributed to SAbR were observed in 3 patients (1.7%) and 5 patients (2.9%), respectively. Conclusions SAbR demonstrated excellent LC of metastatic renal cell carcinoma with a favorable safety profile when an adequate dose and coverage were applied. Multimodality treatment with surgery should be considered for reirradiation or vertebral metastasis. A higher radiation dose may be required in patients who received previous systemic therapies.
UR - http://www.scopus.com/inward/record.url?scp=85017308709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017308709&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2017.01.032
DO - 10.1016/j.ijrobp.2017.01.032
M3 - Article
C2 - 28587057
AN - SCOPUS:85017308709
SN - 0360-3016
VL - 98
SP - 91
EP - 100
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 1
ER -