TY - JOUR
T1 - RNA sequencing identifies transcriptionally viable gene fusions in esophageal adenocarcinomas
AU - Blum, Andrew E.
AU - Venkitachalam, Srividya
AU - Guo, Yan
AU - Kieber-Emmons, Ann Marie
AU - Ravi, Lakshmeswari
AU - Chandar, Apoorva K.
AU - Iyer, Prasad G.
AU - Canto, Marcia I.
AU - Wang, Jean S.
AU - Shaheen, Nicholas J.
AU - Barnholtz-Sloan, Jill S.
AU - Markowitz, Sanford D.
AU - Willis, Joseph E.
AU - Shyr, Yu
AU - Chak, Amitabh
AU - Varadan, Vinay
AU - Guda, Kishore
N1 - Publisher Copyright:
© 2016 AACR.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Esophageal adenocarcinoma is a deadly cancer with increasing incidence in the United States, but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pretreatment esophageal adenocarcinomaand 49 nonmalignant biopsy tissues from patients undergoing endoscopy for Barrett's esophagus. In this cohort, we identified 21 novel candidate esophageal adenocarcinoma-associated fusions occurring in 3.33% to 11.67% of esophageal adenocarcinomas. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pretreatment esophageal adenocarcinoma (N = 115) and nonmalignant (N = 183) biopsy tissues. In particular, we observed RPS6KB1-VMP1 gene fusion as a recurrent event occurring in approximately 10% of esophageal adenocarcinoma cases. Notably, esophageal adenocarcinoma cases harboring RPS6KB1-VMP1 fusions exhibited significantly poorer overall survival as compared with fusion-negative cases. Mechanistic investigations established that the RPS6KB1-VMP1 transcript coded for a fusion protein, which significantly enhanced the growth rate of nondysplastic Barrett's esophagus cells. Compared with the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1-VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1-VMP1 as a genetic fusion that promotes esophageal adenocarcinoma by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas.
AB - Esophageal adenocarcinoma is a deadly cancer with increasing incidence in the United States, but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pretreatment esophageal adenocarcinomaand 49 nonmalignant biopsy tissues from patients undergoing endoscopy for Barrett's esophagus. In this cohort, we identified 21 novel candidate esophageal adenocarcinoma-associated fusions occurring in 3.33% to 11.67% of esophageal adenocarcinomas. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pretreatment esophageal adenocarcinoma (N = 115) and nonmalignant (N = 183) biopsy tissues. In particular, we observed RPS6KB1-VMP1 gene fusion as a recurrent event occurring in approximately 10% of esophageal adenocarcinoma cases. Notably, esophageal adenocarcinoma cases harboring RPS6KB1-VMP1 fusions exhibited significantly poorer overall survival as compared with fusion-negative cases. Mechanistic investigations established that the RPS6KB1-VMP1 transcript coded for a fusion protein, which significantly enhanced the growth rate of nondysplastic Barrett's esophagus cells. Compared with the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1-VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1-VMP1 as a genetic fusion that promotes esophageal adenocarcinoma by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas.
UR - http://www.scopus.com/inward/record.url?scp=84989931427&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989931427&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-16-0979
DO - 10.1158/0008-5472.CAN-16-0979
M3 - Article
C2 - 27503924
AN - SCOPUS:84989931427
SN - 0008-5472
VL - 76
SP - 5628
EP - 5633
JO - Cancer Research
JF - Cancer Research
IS - 19
ER -