TY - JOUR
T1 - Rho GTPases orient directional sensing in chemotaxis
AU - Wang, Yu
AU - Senoo, Hiroshi
AU - Sesaki, Hiromi
AU - Iijima, Miho
PY - 2013/12/3
Y1 - 2013/12/3
N2 - During chemotaxis, cells sense extracellular chemical gradients and position Ras GTPase activation and phosphatidylinositol (3,4,5)- triphosphate (PIP3) production toward chemoattractants. These two major signaling events are visualized by biosensors in a crescent- like zone at the plasma membrane. Here, we show that a Dictyostelium Rho GTPase, RacE, and a guanine nucleotide exchange factor, GxcT, stabilize the orientation of Ras activation and PIP3 production in response to chemoattractant gradients, and this regulation occurred independently of the actin cytoskeleton and cell polarity. Cells lacking RacE or GxcT fail to persistently direct Ras activation and PIP3 production toward chemoattractants, leading to lateral pseudopod extension and impaired chemotaxis. Constitutively active forms of RacE and human RhoA are located on the portion of the plasma membrane that faces lower concentrations of chemoattractants, opposite of PIP3 production. Mechanisms that control the localization of the constitutively active form of RacE require its effector domain, but not PIP3. Our findings reveal a critical role for Rho GTPases in positioning Ras activation and thereby establishing the accuracy of directional sensing.
AB - During chemotaxis, cells sense extracellular chemical gradients and position Ras GTPase activation and phosphatidylinositol (3,4,5)- triphosphate (PIP3) production toward chemoattractants. These two major signaling events are visualized by biosensors in a crescent- like zone at the plasma membrane. Here, we show that a Dictyostelium Rho GTPase, RacE, and a guanine nucleotide exchange factor, GxcT, stabilize the orientation of Ras activation and PIP3 production in response to chemoattractant gradients, and this regulation occurred independently of the actin cytoskeleton and cell polarity. Cells lacking RacE or GxcT fail to persistently direct Ras activation and PIP3 production toward chemoattractants, leading to lateral pseudopod extension and impaired chemotaxis. Constitutively active forms of RacE and human RhoA are located on the portion of the plasma membrane that faces lower concentrations of chemoattractants, opposite of PIP3 production. Mechanisms that control the localization of the constitutively active form of RacE require its effector domain, but not PIP3. Our findings reveal a critical role for Rho GTPases in positioning Ras activation and thereby establishing the accuracy of directional sensing.
UR - http://www.scopus.com/inward/record.url?scp=84889644576&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889644576&partnerID=8YFLogxK
U2 - 10.1073/pnas.1312540110
DO - 10.1073/pnas.1312540110
M3 - Article
C2 - 24248334
AN - SCOPUS:84889644576
SN - 0027-8424
VL - 110
SP - E4723-E4732
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 49
ER -