TY - JOUR
T1 - Renal sodium and magnesium reabsorption are not coupled in a mouse model of Gordon syndrome
AU - van Megen, Wouter H.
AU - Grimm, Paul R.
AU - Welling, Paul A.
AU - van der Wijst, Jenny
N1 - Publisher Copyright:
© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
PY - 2018/7
Y1 - 2018/7
N2 - Active reabsorption of magnesium (Mg 2+ ) in the distal convoluted tubule (DCT) of the kidney is crucial for maintaining Mg 2+ homeostasis. Impaired activity of the Na + -Cl − -cotransporter (NCC) has been associated with hypermagnesiuria and hypomagnesemia, while increased activity of NCC, as observed in patients with Gordon syndrome, is not associated with alterations in Mg 2+ balance. To further elucidate the possible interrelationship between NCC activity and renal Mg 2+ handling, plasma Mg 2+ levels and urinary excretion of sodium (Na + ) and Mg 2+ were measured in a mouse model of Gordon syndrome. In this model, DCT1-specific expression of a constitutively active mutant form of the NCC-phosphorylating kinase, SPAK (CA-SPAK), increases NCC activity and hydrochlorothiazide (HCTZ)-sensitive Na + reabsorption. These mice were normomagnesemic and HCTZ administration comparably reduced plasma Mg 2+ levels in CA-SPAK mice and control littermates. As inferred by the initial response to HCTZ, CA-SPAK mice exhibited greater NCC-dependent Na + reabsorption together with decreased Mg 2+ reabsorption, compared to controls. Following prolonged HCTZ administration (4 days), CA-SPAK mice exhibited higher urinary Mg 2+ excretion, while urinary Na + excretion decreased to levels observed in control animals. Surprisingly, CA-SPAK mice had unaltered renal expression of Trpm6, encoding the Mg 2+ -permeable channel TRPM6, or other magnesiotropic genes. In conclusion, CA-SPAK mice exhibit normomagnesemia, despite increased NCC activity and Na + reabsorption. Thus, Mg 2+ reabsorption is not coupled to increased thiazide-sensitive Na + reabsorption, suggesting a similar process explains normomagnesemia in Gordon syndrome. Further research is required to unravel the molecular underpinnings of this phenomenon and the more pronounced Mg 2+ excretion after prolonged HCTZ administration.
AB - Active reabsorption of magnesium (Mg 2+ ) in the distal convoluted tubule (DCT) of the kidney is crucial for maintaining Mg 2+ homeostasis. Impaired activity of the Na + -Cl − -cotransporter (NCC) has been associated with hypermagnesiuria and hypomagnesemia, while increased activity of NCC, as observed in patients with Gordon syndrome, is not associated with alterations in Mg 2+ balance. To further elucidate the possible interrelationship between NCC activity and renal Mg 2+ handling, plasma Mg 2+ levels and urinary excretion of sodium (Na + ) and Mg 2+ were measured in a mouse model of Gordon syndrome. In this model, DCT1-specific expression of a constitutively active mutant form of the NCC-phosphorylating kinase, SPAK (CA-SPAK), increases NCC activity and hydrochlorothiazide (HCTZ)-sensitive Na + reabsorption. These mice were normomagnesemic and HCTZ administration comparably reduced plasma Mg 2+ levels in CA-SPAK mice and control littermates. As inferred by the initial response to HCTZ, CA-SPAK mice exhibited greater NCC-dependent Na + reabsorption together with decreased Mg 2+ reabsorption, compared to controls. Following prolonged HCTZ administration (4 days), CA-SPAK mice exhibited higher urinary Mg 2+ excretion, while urinary Na + excretion decreased to levels observed in control animals. Surprisingly, CA-SPAK mice had unaltered renal expression of Trpm6, encoding the Mg 2+ -permeable channel TRPM6, or other magnesiotropic genes. In conclusion, CA-SPAK mice exhibit normomagnesemia, despite increased NCC activity and Na + reabsorption. Thus, Mg 2+ reabsorption is not coupled to increased thiazide-sensitive Na + reabsorption, suggesting a similar process explains normomagnesemia in Gordon syndrome. Further research is required to unravel the molecular underpinnings of this phenomenon and the more pronounced Mg 2+ excretion after prolonged HCTZ administration.
KW - Gordon syndrome
KW - kidney
KW - magnesium
KW - sodium
UR - http://www.scopus.com/inward/record.url?scp=85050795814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050795814&partnerID=8YFLogxK
U2 - 10.14814/phy2.13728
DO - 10.14814/phy2.13728
M3 - Article
C2 - 30030908
AN - SCOPUS:85050795814
SN - 2051-817X
VL - 6
JO - Physiological Reports
JF - Physiological Reports
IS - 14
M1 - e13728
ER -