Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue

Okechukwu T. Ukairo, Corry D. Bondi, Amy Hauck Newman, Santosh S. Kulkarni, Alan P. Kozikowski, Stephen Pan, Christopher K. Surratt

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Binding of cocaine to the dopamine transporter (DAT) protein blocks synaptic dopamine clearance, triggering the psychoactive effects associated with the drug; the discrete drug-protein interactions, however, remain poorly understood. A longstanding postulate holds that cocaine inhibits DAT-mediated dopamine transport via competition with dopamine for formation of an ionic bond with the DAT transmembrane aspartic acid residue D79. In the present study, DAT mutations of this residue were generated and assayed for translocation of radiolabeled dopamine and binding of radiolabeled DAT inhibitors under identical conditions. When feasible, dopamine uptake inhibition potency and apparent binding affinity Ki values were determined for structurally diverse DAT inhibitors. The glutamic acid substitution mutant (D79E) displayed values indistinguishable from wild-type DAT in both assays for the charge-neutral cocaine analog 8-oxa-norcocaine, a finding not supportive of the D79 "salt bridge" ligand-docking model. In addressing whether the D79 side chain contributes to the DAT binding sites of other portions of the cocaine pharmacophore, only inhibitors with modifications of the tropane ring C-3 substituent, i.e., benztropine and its analogs, displayed a substantially altered dopamine uptake inhibition potency as a function of the D79E mutation. A single conservative amino acid substitution thus differentiated structural requirements for benztropine function relative to those for all other classical DAT inhibitors. Distinguishing the precise mechanism of action of this DAT inhibitor with relatively low abuse liability from that of cocaine may be attainable using DAT mutagenesis and other structure-function studies, opening the door to rational design of therapeutic agents for cocaine abuse.

Original languageEnglish (US)
Pages (from-to)575-583
Number of pages9
JournalJournal of Pharmacology and Experimental Therapeutics
Volume314
Issue number2
DOIs
StatePublished - Aug 2005
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Fingerprint

Dive into the research topics of 'Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue'. Together they form a unique fingerprint.

Cite this