Rate-agnostic (causal) structure learning

Sergey Plis, David Danks, Cynthia Freeman, Vince Calhoun

Research output: Contribution to journalConference articlepeer-review

7 Scopus citations


Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a "rate-agnostic" manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling.

Original languageEnglish (US)
Pages (from-to)3303-3311
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - 2015
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Rate-agnostic (causal) structure learning'. Together they form a unique fingerprint.

Cite this