Rapid and accurate determination of tissue optical properties using least-squares support vector machines

Ishan Barman, Narahara Chari Dingari, Narasimhan Rajaram, James W. Tunnell, Ramachandra R. Dasari, Michael S. Feld

Research output: Contribution to journalArticlepeer-review

Abstract

Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characterization of biological tissue, especially for dysplasia and cancer detection, by determination of the tissue optical properties. A major challenge in performing routine clinical diagnosis lies in the extraction of the relevant parameters, especially at high absorption levels typically observed in cancerous tissue. Here, we present a new least-squares support vector machine (LS-SVM) based regression algorithm for rapid and accurate determination of the absorption and scattering properties. Using physical tissue models, we demonstrate that the proposed method can be implemented more than two orders of magnitude faster than the state-of-the-art approaches while providing better prediction accuracy. Our results show that the proposed regression method has great potential for clinical applications including in tissue scanners for cancer margin assessment, where rapid quantification of optical properties is critical to the performance.

Original languageEnglish (US)
Pages (from-to)592-599
Number of pages8
JournalBiomedical Optics Express
Volume2
Issue number3
DOIs
StatePublished - Mar 1 2011
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Rapid and accurate determination of tissue optical properties using least-squares support vector machines'. Together they form a unique fingerprint.

Cite this