Random and site-specific mutagenesis of the Helicobacter pylori ferric uptake regulator provides insight into Fur structure-function relationships

Jeremy J. Gilbreath, Oscar Q. Pich, Stéphane L. Benoit, Angelique N. Besold, Jeong Heon Cha, Robert J. Maier, Sarah L.J. Michel, Ernest L. Maynard, D. Scott Merrell

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for colonization and survival within the gastric mucosa. H.pyloriFur is unique in its ability to activate and repress gene expression in both the iron-bound (Fe-Fur) and apo forms (apo-Fur). In the current study we combined random and site-specific mutagenesis to identify amino acid residues important for both Fe-Fur and apo-Fur function. We identified 25 mutations that affected Fe-Fur repression and 23 mutations that affected apo-Fur repression, as determined by transcriptional analyses of the Fe-Fur target gene amiE, and the apo-Fur target gene, pfr. In addition, eight of these mutations also significantly affected levels of Fur in the cell. Based on regulatory phenotypes, we selected several representative mutations to characterize further. Of those selected, we purified the wild-type (HpFurWT) and three mutant Fur proteins (HpFurE5A, HpFurA92T and HpFurH134Y), which represent mutations in the N-terminal extension, the regulatory metal binding site (S2) and the structural metal binding site (S3) respectively. Purified proteins were evaluated for secondary structure by circular dichroism spectroscopy, iron-binding by atomic absorption spectrophotometry, oligomerization in manganese-substituted and apo conditions by in vitro cross-linking assays, and DNA binding to Fe-Fur and apo-Fur target sequences by fluorescence anisotropy. The results showed that the N-terminal, S2 and S3 regions play distinct roles in terms of Fur structure-function relationships. Overall, these studies provide novel information regarding the role of these residues in Fur function, and provide mechanistic insight into how H.pyloriFur regulates gene expression in both the iron-bound and apo forms of the protein.

Original languageEnglish (US)
Pages (from-to)304-323
Number of pages20
JournalMolecular Microbiology
Volume89
Issue number2
DOIs
StatePublished - Jul 2013
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Random and site-specific mutagenesis of the Helicobacter pylori ferric uptake regulator provides insight into Fur structure-function relationships'. Together they form a unique fingerprint.

Cite this