TY - JOUR
T1 - Quantifying the potential value of antigen-detection rapid diagnostic tests for COVID-19
T2 - a modelling analysis
AU - Ricks, Saskia
AU - Kendall, Emily A.
AU - Dowdy, David W.
AU - Sacks, Jilian A.
AU - Schumacher, Samuel G.
AU - Arinaminpathy, Nimalan
N1 - Funding Information:
This work was funded by the Foundation for Innovative New Diagnostics (FIND), through a grant from WHO. Authors JS and SS are employees of FIND. Otherwise, neither FIND nor WHO had no role in the study design, analysis, or interpretation.
Funding Information:
Foundation for Innovative New Diagnostics (FIND) funded this work through a grant from the World Health Organization (WHO). SR was supported by grant number 203839/A/16/Z, funded by the Wellcome Trust. NA was supported by grant number MR/R015600/1, jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID). JAS and SGS are employees of FIND; the funders otherwise had no role in the study design, analysis, or interpretation.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Testing plays a critical role in treatment and prevention responses to the COVID-19 pandemic. Compared to nucleic acid tests (NATs), antigen-detection rapid diagnostic tests (Ag-RDTs) can be more accessible, but typically have lower sensitivity and specificity. By quantifying these trade-offs, we aimed to inform decisions about when an Ag-RDT would offer greater public health value than reliance on NAT. Methods: Following an expert consultation, we selected two use cases for analysis: rapid identification of people with COVID-19 amongst patients admitted with respiratory symptoms in a ‘hospital’ setting and early identification and isolation of people with mildly symptomatic COVID-19 in a ‘community’ setting. Using decision analysis, we evaluated the health system cost and health impact (deaths averted and infectious days isolated) of an Ag-RDT-led strategy, compared to a strategy based on NAT and clinical judgement. We adopted a broad range of values for ‘contextual’ parameters relevant to a range of settings, including the availability of NAT and the performance of clinical judgement. We performed a multivariate sensitivity analysis to all of these parameters. Results: In a hospital setting, an Ag-RDT-led strategy would avert more deaths than a NAT-based strategy, and at lower cost per death averted, when the sensitivity of clinical judgement is less than 90%, and when NAT results are available in time to inform clinical decision-making for less than 85% of patients. The use of an Ag-RDT is robustly supported in community settings, where it would avert more transmission at lower cost than relying on NAT alone, under a wide range of assumptions. Conclusions: Despite their imperfect sensitivity and specificity, Ag-RDTs have the potential to be simultaneously more impactful, and have a lower cost per death and infectious person-days averted, than current approaches to COVID-19 diagnostic testing.
AB - Background: Testing plays a critical role in treatment and prevention responses to the COVID-19 pandemic. Compared to nucleic acid tests (NATs), antigen-detection rapid diagnostic tests (Ag-RDTs) can be more accessible, but typically have lower sensitivity and specificity. By quantifying these trade-offs, we aimed to inform decisions about when an Ag-RDT would offer greater public health value than reliance on NAT. Methods: Following an expert consultation, we selected two use cases for analysis: rapid identification of people with COVID-19 amongst patients admitted with respiratory symptoms in a ‘hospital’ setting and early identification and isolation of people with mildly symptomatic COVID-19 in a ‘community’ setting. Using decision analysis, we evaluated the health system cost and health impact (deaths averted and infectious days isolated) of an Ag-RDT-led strategy, compared to a strategy based on NAT and clinical judgement. We adopted a broad range of values for ‘contextual’ parameters relevant to a range of settings, including the availability of NAT and the performance of clinical judgement. We performed a multivariate sensitivity analysis to all of these parameters. Results: In a hospital setting, an Ag-RDT-led strategy would avert more deaths than a NAT-based strategy, and at lower cost per death averted, when the sensitivity of clinical judgement is less than 90%, and when NAT results are available in time to inform clinical decision-making for less than 85% of patients. The use of an Ag-RDT is robustly supported in community settings, where it would avert more transmission at lower cost than relying on NAT alone, under a wide range of assumptions. Conclusions: Despite their imperfect sensitivity and specificity, Ag-RDTs have the potential to be simultaneously more impactful, and have a lower cost per death and infectious person-days averted, than current approaches to COVID-19 diagnostic testing.
KW - Antigen
KW - COVID-19
KW - Rapid diagnostic tests
UR - http://www.scopus.com/inward/record.url?scp=85102716926&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102716926&partnerID=8YFLogxK
U2 - 10.1186/s12916-021-01948-z
DO - 10.1186/s12916-021-01948-z
M3 - Article
C2 - 33685466
AN - SCOPUS:85102716926
SN - 1741-7015
VL - 19
JO - BMC medicine
JF - BMC medicine
IS - 1
M1 - 75
ER -