Quantifying the dynamics of coupled networks of switches and oscillators

Matthew R. Francis, Elana J. Fertig

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.

Original languageEnglish (US)
Article numbere29497
JournalPloS one
Issue number1
StatePublished - Jan 5 2012

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Quantifying the dynamics of coupled networks of switches and oscillators'. Together they form a unique fingerprint.

Cite this