TY - JOUR
T1 - Protection against acetaminophen-induced liver injury and lethality by interleukin 10
T2 - Role of inducible nitric oxide synthase
AU - Bourdi, Mohammed
AU - Masubuchi, Yasuhiro
AU - Reilly, Timothy P.
AU - Amouzadeh, Hamid R.
AU - Martin, Jackie L.
AU - George, John W.
AU - Shah, Anjali G.
AU - Pohl, Lance R.
PY - 2002
Y1 - 2002
N2 - Mechanistic study of idiosyncratic drug-induced hepatitis (DIH) continues to be a challenging problem because of the lack of animal models. The inability to produce this type of hepatotoxicity in animals, and its relative rarity in humans, may be linked to the production of anti-inflammatory factors that prevent drug-protein adducts from causing liver injury by immune and nonimmune mechanisms. We tested this hypothesis by using a model of acetaminophen (APAP)-induced liver injury in mice. After APAP treatment, a significant increase was observed in serum levels of interleukin (IL)-4, IL-10, and IL-13, cytokines that regulate inflammatory mediator production and cell-mediated autoimmunity. When IL-10 knockout (KO) mice were treated with APAP, most of these mice died within 24 to 48 hours from liver injury. This increased susceptibility to APAP-induced liver injury appeared to correlate with an elevated expression of liver proinflammatory cytokines, tumor necrosis factor (TNF)-α and IL-1, as well as inducible nitric oxide synthase (iNOS). In this regard, mice lacking both IL-10 and iNOS genes were protected from APAP-induced liver injury and lethality when compared with IL-10 KO mice. All strains, including wild-type animals, generated similar amounts of liver APAP-protein adducts, indicating that the increased susceptibility of IL-10 KO mice to APAP hepatotoxicity was not caused by an enhanced formation of APAP-protein adducts. In conclusion, these findings suggest that an important feature of the normal response to drug-induced liver injury may be the increased expression of anti-inflammatory factors such as IL-10. Certain polymorphisms of these factors may have a role in determining the susceptibility of individuals to idiosyncratic DIH.
AB - Mechanistic study of idiosyncratic drug-induced hepatitis (DIH) continues to be a challenging problem because of the lack of animal models. The inability to produce this type of hepatotoxicity in animals, and its relative rarity in humans, may be linked to the production of anti-inflammatory factors that prevent drug-protein adducts from causing liver injury by immune and nonimmune mechanisms. We tested this hypothesis by using a model of acetaminophen (APAP)-induced liver injury in mice. After APAP treatment, a significant increase was observed in serum levels of interleukin (IL)-4, IL-10, and IL-13, cytokines that regulate inflammatory mediator production and cell-mediated autoimmunity. When IL-10 knockout (KO) mice were treated with APAP, most of these mice died within 24 to 48 hours from liver injury. This increased susceptibility to APAP-induced liver injury appeared to correlate with an elevated expression of liver proinflammatory cytokines, tumor necrosis factor (TNF)-α and IL-1, as well as inducible nitric oxide synthase (iNOS). In this regard, mice lacking both IL-10 and iNOS genes were protected from APAP-induced liver injury and lethality when compared with IL-10 KO mice. All strains, including wild-type animals, generated similar amounts of liver APAP-protein adducts, indicating that the increased susceptibility of IL-10 KO mice to APAP hepatotoxicity was not caused by an enhanced formation of APAP-protein adducts. In conclusion, these findings suggest that an important feature of the normal response to drug-induced liver injury may be the increased expression of anti-inflammatory factors such as IL-10. Certain polymorphisms of these factors may have a role in determining the susceptibility of individuals to idiosyncratic DIH.
UR - http://www.scopus.com/inward/record.url?scp=0036154452&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036154452&partnerID=8YFLogxK
U2 - 10.1053/jhep.2002.30956
DO - 10.1053/jhep.2002.30956
M3 - Article
C2 - 11826401
AN - SCOPUS:0036154452
SN - 0270-9139
VL - 35
SP - 289
EP - 298
JO - Hepatology
JF - Hepatology
IS - 2
ER -