Skip to main navigation
Skip to search
Skip to main content
Johns Hopkins University Home
Home
Profiles
Research units
Research output
Search by expertise, name or affiliation
Principal component analysis on non-gaussian dependent data
Fang Han, Han Liu
Research output
:
Contribution to conference
›
Paper
›
peer-review
6
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Principal component analysis on non-gaussian dependent data'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Copula
100%
Degree of Dependence
33%
Dependent Data
100%
Generalization Bounds
33%
High-dimensional Setting
33%
Monotone Transformations
33%
Multivariate Gaussian
33%
Multivariate Statistical Techniques
33%
Non-Gaussian
100%
Non-IID
33%
Parameter Estimation
33%
Parametric Rate
33%
Principal Coordinate Analysis (PCoA)
100%
Recovery Estimation
33%
Semi-parametric
33%
Semiparametric Model
33%
Support Parameters
33%
Support Recovery
33%
Theoretical Performance
33%
Weak Dependence
33%
Mathematics
Copula
100%
Dependent Data
100%
Gaussian Distribution
100%
Parameter Estimation
33%
Parametric
33%
Principal Component Analysis
100%
Statistical Method
33%
Sufficient Condition
33%
Economics, Econometrics and Finance
Principal Components
100%
Statistical Method
50%