TY - JOUR
T1 - Prevalence and expression of the plasmid-mediated quinolone resistance determinant qnrA1
AU - Xu, Xiaogang
AU - Wu, Shi
AU - Ye, Xinyu
AU - Liu, Yang
AU - Shi, Wanliang
AU - Zhang, Yingyuan
AU - Wang, Minggui
PY - 2007/11
Y1 - 2007/11
N2 - Since its discovery, qnrA has been found in most common Enterobacteriaceae. Ciprofloxacin MICs conferred by different qnrA-positive plasmids could range from 0.1 μg/ml to 2 μg/ml in Escherichia coli J53. The reasons for different ciprofloxacin MICs conferred by qnrA have not been fully clarified. Five hundred forty-one consecutive gram-negative clinical strains that were resistant or intermediate to ciprofloxacin and that were isolated in Shanghai in 2005 were screened for qnrA by PCR. For qnrA-positivt isolates, the transferability of quinolone resistance was determined by conjugation and mutations within the quinolone resistance-determining region (QRDR) of gyrA and parC. aac(6′)-Ib-cr was detected and qnrA RNA expression was determined using real-time reverse transcription-PCR for transconjugants with different ciprofloxacin MICs. The qnrA gene was detected in 7 of the 541 clinical isolates. Quinolone resistance was transferred in four strains by conjugation. Mutations in the QRDR of gyrA and parC were detected in five qnrA-positive clinical strains with higher ciprofloxacin MICs. Of four qnrA-bearing plasmids in E. coli J53, pHS4 and pHS5 conferred ciprofloxacin MICs of 0.094 to 0.125 μg/ml; pHS3, which harbored the aac(6′)-Ib-cr gene as well, conferred a ciprofloxacin MIC of 0.25 μg/ml, and pHS6, which had both the aac(6′)-Ib-cr gene and a high expression level of qnrA, had a ciprofloxacin MIC of 1.0 μg/ml. The prevalence of qnrA appeared to be higher in Enterobacter cloacae than in other Enterobacteriaceae. The coexistence of qnrA and aac(6′)-Ib-cr in a single plasmid and increased qnrA expression can account for the different levels of ciprofloxacin resistance seen in transconjugants.
AB - Since its discovery, qnrA has been found in most common Enterobacteriaceae. Ciprofloxacin MICs conferred by different qnrA-positive plasmids could range from 0.1 μg/ml to 2 μg/ml in Escherichia coli J53. The reasons for different ciprofloxacin MICs conferred by qnrA have not been fully clarified. Five hundred forty-one consecutive gram-negative clinical strains that were resistant or intermediate to ciprofloxacin and that were isolated in Shanghai in 2005 were screened for qnrA by PCR. For qnrA-positivt isolates, the transferability of quinolone resistance was determined by conjugation and mutations within the quinolone resistance-determining region (QRDR) of gyrA and parC. aac(6′)-Ib-cr was detected and qnrA RNA expression was determined using real-time reverse transcription-PCR for transconjugants with different ciprofloxacin MICs. The qnrA gene was detected in 7 of the 541 clinical isolates. Quinolone resistance was transferred in four strains by conjugation. Mutations in the QRDR of gyrA and parC were detected in five qnrA-positive clinical strains with higher ciprofloxacin MICs. Of four qnrA-bearing plasmids in E. coli J53, pHS4 and pHS5 conferred ciprofloxacin MICs of 0.094 to 0.125 μg/ml; pHS3, which harbored the aac(6′)-Ib-cr gene as well, conferred a ciprofloxacin MIC of 0.25 μg/ml, and pHS6, which had both the aac(6′)-Ib-cr gene and a high expression level of qnrA, had a ciprofloxacin MIC of 1.0 μg/ml. The prevalence of qnrA appeared to be higher in Enterobacter cloacae than in other Enterobacteriaceae. The coexistence of qnrA and aac(6′)-Ib-cr in a single plasmid and increased qnrA expression can account for the different levels of ciprofloxacin resistance seen in transconjugants.
UR - http://www.scopus.com/inward/record.url?scp=35848954103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35848954103&partnerID=8YFLogxK
U2 - 10.1128/AAC.00616-07
DO - 10.1128/AAC.00616-07
M3 - Article
C2 - 17724159
AN - SCOPUS:35848954103
SN - 0066-4804
VL - 51
SP - 4105
EP - 4110
JO - Antimicrobial Agents and Chemotherapy
JF - Antimicrobial Agents and Chemotherapy
IS - 11
ER -