Predominant osmotically active organic solutes in rat and rabbit renal medullas

S. Bagnasco, R. Balaban, H. M. Fales, Y. M. Yang, M. Burg

Research output: Contribution to journalArticlepeer-review

318 Scopus citations

Abstract

The mechanism that concentrates the urine to an osmolality several times that of systemic plasma results in high concentrations of solutes (particularly NaCl and urea) in extracellular fluid of renal medulla, but not in the labyrinth of the renal cortex. Intracellular and extracellular osmolality must be equal in animals, but the known intracellular levels of Na and K salts and urea in renal medullas are much too low to balance the high extracellular osmolality. The purpose of these studies was to identify the other intracellular osmolytes that must be present. Cortexes and medullas from rabbit and rat kidneys were analyzed by proton nuclear magnetic resonance, mass spectrometry, and chemical assays to determine the identity and amount of organic solutes. Large amounts of glycerophosphorylcholine, betaine, sorbitol, and inositol were found in both species localized almost exclusively to the inner medulla. In rabbits during antidiuresis glycerophosphorylcholine, betaine, and sorbitol were present in the inner medulla, at concentrations of 21.1, 34.8, and 20.8 μmol/g wet weight, respectively, but were not detected in the cortex. Inositol was present in rabbit inner medulla at 10.7 μmol/g wet weight and was also present in the cortex, but at lower concentration. None of the above metabolites was present in measurable amounts in urine or peripheral plasma. The accumulation in the cells of the inner medulla of relatively large amounts of betaine, sorbitol, glycerophosphorylcholine and inositol during antidiuresis suggests that they may play a significant role in the maintenance of intracellular osmotic balance.

Original languageEnglish (US)
Pages (from-to)5872-5877
Number of pages6
JournalJournal of Biological Chemistry
Volume261
Issue number13
StatePublished - 1986
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Predominant osmotically active organic solutes in rat and rabbit renal medullas'. Together they form a unique fingerprint.

Cite this