Predicting Postoperative Pain and Opioid Use with Machine Learning Applied to Longitudinal Electronic Health Record and Wearable Data

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND:  Managing acute postoperative pain and minimizing chronic opioid use are crucial for patient recovery and long-term well-being. OBJECTIVES:  This study explored using preoperative electronic health record (EHR) and wearable device data for machine-learning models that predict postoperative acute pain and chronic opioid use. METHODS:  The study cohort consisted of approximately 347 All of Us Research Program participants who underwent one of eight surgical procedures and shared EHR and wearable device data. We developed four machine learning models and used the Shapley additive explanations (SHAP) technique to identify the most relevant predictors of acute pain and chronic opioid use. RESULTS:  The stacking ensemble model achieved the highest accuracy in predicting acute pain (0.68) and chronic opioid use (0.89). The area under the curve score for severe pain versus other pain was highest (0.88) when predicting acute postoperative pain. Values of logistic regression, random forest, extreme gradient boosting, and stacking ensemble ranged from 0.74 to 0.90 when predicting postoperative chronic opioid use. Variables from wearable devices played a prominent role in predicting both outcomes. CONCLUSION:  SHAP detection of individual risk factors for severe pain can help health care providers tailor pain management plans. Accurate prediction of postoperative chronic opioid use before surgery can help mitigate the risk for the outcomes we studied. Prediction can also reduce the chances of opioid overuse and dependence. Such mitigation can promote safer and more effective pain control for patients during their recovery.

Original languageEnglish (US)
Pages (from-to)569-582
Number of pages14
JournalApplied clinical informatics
Volume15
Issue number3
DOIs
StatePublished - May 1 2024

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Health Information Management

Fingerprint

Dive into the research topics of 'Predicting Postoperative Pain and Opioid Use with Machine Learning Applied to Longitudinal Electronic Health Record and Wearable Data'. Together they form a unique fingerprint.

Cite this