TY - JOUR
T1 - Predicting image properties in penalized-likelihood reconstructions of flat-panel CBCT
AU - Wang, Wenying
AU - Gang, Grace J.
AU - Siewerdsen, Jeffrey H.
AU - Stayman, J. Webster
N1 - Funding Information:
This research was supported by the National Institutes of Health Grants U01-EB-018758 and a Johns Hopkins University Catalyst Grant.
Publisher Copyright:
© 2018 American Association of Physicists in Medicine
PY - 2019/1
Y1 - 2019/1
N2 - Purpose: Model-based iterative reconstruction (MBIR) algorithms such as penalized-likelihood (PL) methods exhibit data-dependent and shift-variant properties. Image quality predictors have been derived to prospectively estimate local noise and spatial resolution, facilitating both system hardware design and tuning of reconstruction methods. However, current MBIR image quality predictors rely on idealized system models, ignoring physical blurring effects and noise correlations found in real systems. In this work, we develop and validate a new set of predictors using a physical system model specific to flat-panel cone-beam CT (FP-CBCT). Methods: Physical models appropriate for integration with MBIR analysis are developed and parameterized to represent nonidealities in FP projection data including focal spot blur, scintillator blur, detector aperture effect, and noise correlations. Flat-panel-specific predictors for local spatial resolution and local noise properties in PL reconstructions are developed based on these realistic physical models. Estimation accuracy of conventional (idealized) and FP-specific predictors is investigated and validated against experimental CBCT measurements using specialized phantoms. Results: Validation studies show that flat-panel-specific predictors can accurately estimate the local spatial resolution and noise properties, while conventional predictors show significant deviations in the magnitude and scale of the spatial resolution and local noise. The proposed predictors show accurate estimations over a range of imaging conditions including varying x-ray technique and regularization strength. The conventional spatial resolution prediction is sharper than ground truth. Using conventional spatial resolution predictor, the full width at half maximum (FWHM) of local point spread function (PSF) is underestimated by 0.2 mm. This mismatch is mostly eliminated in FP-specific prediction. The general shape and amplitude of local noise power spectrum (NPS) FP-specific predictions are consistent with measurement, while the conventional predictions underestimated the noise level by 70%. Conclusion: The proposed image quality predictors permit accurate estimation of local spatial resolution and noise properties for PL reconstruction, accounting for dependencies on the system geometry, x-ray technique, and patient-specific anatomy in real FP-CBCT. Such tools enable prospective analysis of image quality for a range of goals including novel system and acquisition design, adaptive and task-driven imaging, and tuning of MBIR for robust and reliable behavior.
AB - Purpose: Model-based iterative reconstruction (MBIR) algorithms such as penalized-likelihood (PL) methods exhibit data-dependent and shift-variant properties. Image quality predictors have been derived to prospectively estimate local noise and spatial resolution, facilitating both system hardware design and tuning of reconstruction methods. However, current MBIR image quality predictors rely on idealized system models, ignoring physical blurring effects and noise correlations found in real systems. In this work, we develop and validate a new set of predictors using a physical system model specific to flat-panel cone-beam CT (FP-CBCT). Methods: Physical models appropriate for integration with MBIR analysis are developed and parameterized to represent nonidealities in FP projection data including focal spot blur, scintillator blur, detector aperture effect, and noise correlations. Flat-panel-specific predictors for local spatial resolution and local noise properties in PL reconstructions are developed based on these realistic physical models. Estimation accuracy of conventional (idealized) and FP-specific predictors is investigated and validated against experimental CBCT measurements using specialized phantoms. Results: Validation studies show that flat-panel-specific predictors can accurately estimate the local spatial resolution and noise properties, while conventional predictors show significant deviations in the magnitude and scale of the spatial resolution and local noise. The proposed predictors show accurate estimations over a range of imaging conditions including varying x-ray technique and regularization strength. The conventional spatial resolution prediction is sharper than ground truth. Using conventional spatial resolution predictor, the full width at half maximum (FWHM) of local point spread function (PSF) is underestimated by 0.2 mm. This mismatch is mostly eliminated in FP-specific prediction. The general shape and amplitude of local noise power spectrum (NPS) FP-specific predictions are consistent with measurement, while the conventional predictions underestimated the noise level by 70%. Conclusion: The proposed image quality predictors permit accurate estimation of local spatial resolution and noise properties for PL reconstruction, accounting for dependencies on the system geometry, x-ray technique, and patient-specific anatomy in real FP-CBCT. Such tools enable prospective analysis of image quality for a range of goals including novel system and acquisition design, adaptive and task-driven imaging, and tuning of MBIR for robust and reliable behavior.
KW - CT image quality
KW - flat-panel cone-beam CT
KW - local point spread function
KW - model-based iterative reconstruction
KW - noise power spectrum
UR - http://www.scopus.com/inward/record.url?scp=85056788502&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056788502&partnerID=8YFLogxK
U2 - 10.1002/mp.13249
DO - 10.1002/mp.13249
M3 - Article
C2 - 30372536
AN - SCOPUS:85056788502
SN - 0094-2405
VL - 46
SP - 65
EP - 80
JO - Medical physics
JF - Medical physics
IS - 1
ER -