Practical workflow for arbitrary non-circular orbits for CT with clinical robotic C-arms

Yiqun Q. Ma, Jianan Gang, Tess Reynolds, Tina Ehtiati, Junyuan Li, Owen Dillon, Tom Russ, Wenying Wang, Clifford Weiss, Nicholas Theodore, Kelvin Hong, Ricky O'Brien, Jeffrey Siewerdsen, J. Webster Stayman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Non-circular orbits in cone-beam CT (CBCT) imaging are increasingly being studied for potential benefits in field-of-view, dose reduction, improved image quality, minimal interference in guided procedures, metal artifact reduction, and more. While modern imaging systems such as robotic C-arms are enabling more freedom in potential orbit designs, practical implementation on such clinical systems remains challenging due to obstacles in critical stages of the workflow, including orbit realization, geometric calibration, and reconstruction. In this work, we build upon previous successes in clinical implementation and address key challenges in the geometric calibration stage with a novel calibration method. The resulting workflow eliminates the need for prior patient scans or dedicated calibration phantoms, and can be conducted in clinically relevant processing times.

Original languageEnglish (US)
Title of host publication7th International Conference on Image Formation in X-Ray Computed Tomography
EditorsJoseph Webster Stayman
PublisherSPIE
ISBN (Electronic)9781510656697
DOIs
StatePublished - 2022
Event7th International Conference on Image Formation in X-Ray Computed Tomography - Virtual, Online
Duration: Jun 12 2022Jun 16 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12304
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference7th International Conference on Image Formation in X-Ray Computed Tomography
CityVirtual, Online
Period6/12/226/16/22

Keywords

  • C-arms. non-circular orbits
  • Cone-beam CT
  • geometric calibration

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Practical workflow for arbitrary non-circular orbits for CT with clinical robotic C-arms'. Together they form a unique fingerprint.

Cite this