TY - JOUR
T1 - Postpartum plasma metabolomic profile among women with preeclampsia and preterm delivery
T2 - Implications for long-term health
AU - Hong, Xiumei
AU - Zhang, Boyang
AU - Liang, Liming
AU - Zhang, Yan
AU - Ji, Yuelong
AU - Wang, Guoying
AU - Ji, Hongkai
AU - Clish, Clary B.
AU - Burd, Irina
AU - Pearson, Colleen
AU - Zuckerman, Barry
AU - Hu, Frank B.
AU - Wang, Xiaobin
N1 - Publisher Copyright:
© 2020 The Author(s).
PY - 2020/10/13
Y1 - 2020/10/13
N2 - Background: Preeclampsia and preterm delivery (PTD) are believed to affect women's long-term health including cardiovascular disease (CVD), but the biological underpinnings are largely unknown. We aimed to test whether maternal postpartum metabolomic profiles, especially CVD-related metabolites, varied according to PTD subtypes with and without preeclampsia, in a US urban, low-income multi-ethnic population. Methods: This study, from the Boston Birth Cohort, included 980 women with term delivery, 79 with medically indicated PTD (mPTD) and preeclampsia, 52 with mPTD only, and 219 with spontaneous PTD (sPTD). Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-mass spectrometry. Linear regression models were used to assess the associations of each metabolite with mPTD with preeclampsia, mPTD only, and sPTD, respectively, adjusting for pertinent covariates. Weighted gene coexpression network analysis was applied to investigate interconnected metabolites associated with the PTD/preeclampsia subgroups. Bonferroni correction was applied to account for multiple testing. Results: A total of 380 known metabolites were analyzed. Compared to term controls, women with mPTD and preeclampsia showed a significant increase in 36 metabolites, mainly representing acylcarnitines and multiple classes of lipids (diacylglycerols, triacylglycerols, phosphocholines, and lysophosphocholines), as well as a decrease in 11 metabolites including nucleotides, steroids, and cholesteryl esters (CEs) (P < 1.3 × 10-4). Alterations of diacylglycerols, triacylglycerols, and CEs in women with mPTD and preeclampsia remained significant when compared to women with mPTD only. In contrast, the metabolite differences between women with mPTD only and term controls were only seen in phosphatidylethanolamine class. Women with sPTD had significantly different levels of 16 metabolites mainly in amino acid, nucleotide, and steroid classes compared to term controls, of which, anthranilic acid, bilirubin, and steroids also had shared associations in women with mPTD and preeclampsia. Conclusion: In this sample of US high-risk women, PTD/preeclampsia subgroups each showed some unique and shared associations with maternal postpartum plasma metabolites, including those known to be predictors of future CVD. These findings, if validated, may provide new insight into metabolomic alterations underlying clinically observed PTD/preeclampsia subgroups and implications for women's future cardiometabolic health.
AB - Background: Preeclampsia and preterm delivery (PTD) are believed to affect women's long-term health including cardiovascular disease (CVD), but the biological underpinnings are largely unknown. We aimed to test whether maternal postpartum metabolomic profiles, especially CVD-related metabolites, varied according to PTD subtypes with and without preeclampsia, in a US urban, low-income multi-ethnic population. Methods: This study, from the Boston Birth Cohort, included 980 women with term delivery, 79 with medically indicated PTD (mPTD) and preeclampsia, 52 with mPTD only, and 219 with spontaneous PTD (sPTD). Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-mass spectrometry. Linear regression models were used to assess the associations of each metabolite with mPTD with preeclampsia, mPTD only, and sPTD, respectively, adjusting for pertinent covariates. Weighted gene coexpression network analysis was applied to investigate interconnected metabolites associated with the PTD/preeclampsia subgroups. Bonferroni correction was applied to account for multiple testing. Results: A total of 380 known metabolites were analyzed. Compared to term controls, women with mPTD and preeclampsia showed a significant increase in 36 metabolites, mainly representing acylcarnitines and multiple classes of lipids (diacylglycerols, triacylglycerols, phosphocholines, and lysophosphocholines), as well as a decrease in 11 metabolites including nucleotides, steroids, and cholesteryl esters (CEs) (P < 1.3 × 10-4). Alterations of diacylglycerols, triacylglycerols, and CEs in women with mPTD and preeclampsia remained significant when compared to women with mPTD only. In contrast, the metabolite differences between women with mPTD only and term controls were only seen in phosphatidylethanolamine class. Women with sPTD had significantly different levels of 16 metabolites mainly in amino acid, nucleotide, and steroid classes compared to term controls, of which, anthranilic acid, bilirubin, and steroids also had shared associations in women with mPTD and preeclampsia. Conclusion: In this sample of US high-risk women, PTD/preeclampsia subgroups each showed some unique and shared associations with maternal postpartum plasma metabolites, including those known to be predictors of future CVD. These findings, if validated, may provide new insight into metabolomic alterations underlying clinically observed PTD/preeclampsia subgroups and implications for women's future cardiometabolic health.
KW - Medically indicated preterm delivery
KW - Metabolome
KW - Postpartum
KW - Preeclampsia
KW - Preterm delivery
KW - Spontaneous preterm delivery
UR - http://www.scopus.com/inward/record.url?scp=85092504071&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092504071&partnerID=8YFLogxK
U2 - 10.1186/s12916-020-01741-4
DO - 10.1186/s12916-020-01741-4
M3 - Article
C2 - 33046083
AN - SCOPUS:85092504071
SN - 1741-7015
VL - 18
JO - BMC Medicine
JF - BMC Medicine
IS - 1
M1 - 277
ER -