Polystyrene micro- and nanoplastics cause placental dysfunction in mice

Katherine C. Dibbon, Grace V. Mercer, Alexandre S. Maekawa, Jenna Hanrahan, Katherine L. Steeves, Lauren C.M. Ringer, André J. Simpson, Myrna J. Simpson, Ahmet A. Baschat, John C. Kingdom, Christopher K. Macgowan, John G. Sled, Karl J. Jobst, Lindsay S. Cahill

Research output: Contribution to journalArticlepeer-review

Abstract

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 μm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.

Original languageEnglish (US)
Pages (from-to)211-218
Number of pages8
JournalBiology of reproduction
Volume110
Issue number1
DOIs
StatePublished - Jan 1 2024

Keywords

  • fetal growth restriction
  • microplastics
  • mouse
  • nanoplastics
  • pregnancy
  • ultrasound

ASJC Scopus subject areas

  • Reproductive Medicine

Fingerprint

Dive into the research topics of 'Polystyrene micro- and nanoplastics cause placental dysfunction in mice'. Together they form a unique fingerprint.

Cite this