TY - GEN
T1 - Piecewise-rigid 2D-3D registration for pose estimation of snake-like manipulator using an intraoperative x-ray projection
AU - Otake, Y.
AU - Murphy, R. J.
AU - Kutzer, M. D.
AU - Taylor, R. H.
AU - Armand, M.
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - Background: Snake-like dexterous manipulators may offer significant advantages in minimally-invasive surgery in areas not reachable with conventional tools. Precise control of a wire-driven manipulator is challenging due to factors such as cable deformation, unknown internal (cable friction) and external forces, thus requiring correcting the calibration intraoperatively by determining the actual pose of the manipulator. Method: A method for simultaneously estimating pose and kinematic configuration of a piecewise-rigid object such as a snake-like manipulator from a single x-ray projection is presented. The method parameterizes kinematics using a small number of variables (e.g., 5), and optimizes them simultaneously with the 6 degree-of-freedom pose parameter of the base link using an image similarity between digitally reconstructed radiographs (DRRs) of the manipulatora's attenuation model and the real x-ray projection. Result: Simulation studies assumed various geometric magnifications (1.2-2.6) and out-of-plane angulations (0°-90°) in a scenario of hip osteolysis treatment, which demonstrated the median joint angle error was 0.04° (for 2.0 magnification, ±10° out-of-plane rotation). Average computation time was 57.6 sec with 82,953 function evaluations on a mid-range GPU. The joint angle error remained lower than 0.07°while out-of-plane rotation was 0°-60°. An experiment using video images of a real manipulator demonstrated a similar trend as the simulation study except for slightly larger error around the tip attributed to accumulation of errors induced by deformation around each joint not modeled with a simple pin joint. Conclusions: The proposed approach enables high precision tracking of a piecewise-rigid object (i.e., a series of connected rigid structures) using a single projection image by incorporating prior knowledge about the shape and kinematic behavior of the object (e.g., each rigid structure connected by a pin joint parameterized by a low degree polynomial basis). Potential applications of the proposed approach include pose estimation of vertebrae in spine and a series of electrodes in coronary sinus catheter. Improvement of GPU performance is expected to further augment computational speed.
AB - Background: Snake-like dexterous manipulators may offer significant advantages in minimally-invasive surgery in areas not reachable with conventional tools. Precise control of a wire-driven manipulator is challenging due to factors such as cable deformation, unknown internal (cable friction) and external forces, thus requiring correcting the calibration intraoperatively by determining the actual pose of the manipulator. Method: A method for simultaneously estimating pose and kinematic configuration of a piecewise-rigid object such as a snake-like manipulator from a single x-ray projection is presented. The method parameterizes kinematics using a small number of variables (e.g., 5), and optimizes them simultaneously with the 6 degree-of-freedom pose parameter of the base link using an image similarity between digitally reconstructed radiographs (DRRs) of the manipulatora's attenuation model and the real x-ray projection. Result: Simulation studies assumed various geometric magnifications (1.2-2.6) and out-of-plane angulations (0°-90°) in a scenario of hip osteolysis treatment, which demonstrated the median joint angle error was 0.04° (for 2.0 magnification, ±10° out-of-plane rotation). Average computation time was 57.6 sec with 82,953 function evaluations on a mid-range GPU. The joint angle error remained lower than 0.07°while out-of-plane rotation was 0°-60°. An experiment using video images of a real manipulator demonstrated a similar trend as the simulation study except for slightly larger error around the tip attributed to accumulation of errors induced by deformation around each joint not modeled with a simple pin joint. Conclusions: The proposed approach enables high precision tracking of a piecewise-rigid object (i.e., a series of connected rigid structures) using a single projection image by incorporating prior knowledge about the shape and kinematic behavior of the object (e.g., each rigid structure connected by a pin joint parameterized by a low degree polynomial basis). Potential applications of the proposed approach include pose estimation of vertebrae in spine and a series of electrodes in coronary sinus catheter. Improvement of GPU performance is expected to further augment computational speed.
KW - intensity-based 2D-3D registration
KW - minimally invasive surgery
KW - pose estimation
KW - snake-like dexterous manipulator
UR - http://www.scopus.com/inward/record.url?scp=84902206003&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902206003&partnerID=8YFLogxK
U2 - 10.1117/12.2043242
DO - 10.1117/12.2043242
M3 - Conference contribution
AN - SCOPUS:84902206003
SN - 9780819498298
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2014
PB - SPIE
T2 - Medical Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling
Y2 - 18 February 2014 through 20 February 2014
ER -