TY - JOUR
T1 - Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3
AU - Guo, Hong
AU - Friedman, Alan D.
PY - 2011/1/7
Y1 - 2011/1/7
N2 - RUNX1 regulates formation of the definitive hematopoietic stem cell and its subsequent lineage maturation, and mutations of RUNX1 contribute to leukemic transformation. Phosphorylation of Ser-48, Ser-303, and Ser-424 by cyclin-dependent kinases (cdks) increases RUNX1 trans-activation activity without perturbing p300 interaction. We now find that endogenous RUNX1 interacts with endogenous HDAC1 or HDAC3. Mutation of the three RUNX1 serines to aspartic acid reduces co-immunoprecipitation with HDAC1 or HDAC3 when expressed in 293T cells; mutation of these three serines to alanine increases HDAC interaction, and mutation of each serine individually to aspartic acid also reduces these interactions. GST-RUNX1 isolated from bacterial extracts bound in vitro translated HDAC1 or HDAC3, and these interactions were weakened by mutation of Ser-48, Ser-303, and Ser-424 to aspartic acid. The ability of RUNX1 phosphorylation and not only serine to aspartic acid conversion to reduce HDAC1 binding was demonstrated using wild-type GST-RUNX1 phosphorylated in vitro using cdk1/cyclinB and by exposure of 293T cells transduced with RUNX1 and HDAC1 to roscovitine, a cdk inhibitor. Finally, RUNX1 or RUNX1(tripleD), in which Ser-48, Ser-303, and Ser-424 are mutated to aspartic acid, stimulated proliferation of transduced, lineage-negative murine marrow progenitors more potently than did RUNX1(tripleA), in which these serines are mutated to alanine, suggesting that stimulation of RUNX1 trans-activation by cdk-mediated reduction in HDAC interaction increases marrow progenitor cell proliferation.
AB - RUNX1 regulates formation of the definitive hematopoietic stem cell and its subsequent lineage maturation, and mutations of RUNX1 contribute to leukemic transformation. Phosphorylation of Ser-48, Ser-303, and Ser-424 by cyclin-dependent kinases (cdks) increases RUNX1 trans-activation activity without perturbing p300 interaction. We now find that endogenous RUNX1 interacts with endogenous HDAC1 or HDAC3. Mutation of the three RUNX1 serines to aspartic acid reduces co-immunoprecipitation with HDAC1 or HDAC3 when expressed in 293T cells; mutation of these three serines to alanine increases HDAC interaction, and mutation of each serine individually to aspartic acid also reduces these interactions. GST-RUNX1 isolated from bacterial extracts bound in vitro translated HDAC1 or HDAC3, and these interactions were weakened by mutation of Ser-48, Ser-303, and Ser-424 to aspartic acid. The ability of RUNX1 phosphorylation and not only serine to aspartic acid conversion to reduce HDAC1 binding was demonstrated using wild-type GST-RUNX1 phosphorylated in vitro using cdk1/cyclinB and by exposure of 293T cells transduced with RUNX1 and HDAC1 to roscovitine, a cdk inhibitor. Finally, RUNX1 or RUNX1(tripleD), in which Ser-48, Ser-303, and Ser-424 are mutated to aspartic acid, stimulated proliferation of transduced, lineage-negative murine marrow progenitors more potently than did RUNX1(tripleA), in which these serines are mutated to alanine, suggesting that stimulation of RUNX1 trans-activation by cdk-mediated reduction in HDAC interaction increases marrow progenitor cell proliferation.
UR - http://www.scopus.com/inward/record.url?scp=78650941326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78650941326&partnerID=8YFLogxK
U2 - 10.1074/jbc.M110.149013
DO - 10.1074/jbc.M110.149013
M3 - Article
C2 - 21059642
AN - SCOPUS:78650941326
SN - 0021-9258
VL - 286
SP - 208
EP - 215
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 1
ER -