TY - JOUR
T1 - Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites
AU - Lin, Zhicheng
AU - Zhang, Ping Wu
AU - Zhu, Xuguang
AU - Melgari, Jean Marc
AU - Huff, Robin
AU - Spieldoch, Rachel L.
AU - Uhl, George R.
PY - 2003/5/30
Y1 - 2003/5/30
N2 - The dopamine transporter (DAT) modulates dopamine neurotransmission and is a primary target for psychostimulant influences on locomotion and reward. Selective DAT expression by dopaminergic neurons has led to use of cocaine analog DAT radioligands to assess rates of progression of dopamine neuronal degeneration in Parkinson's disease. We have documented that DAT is a phosphoprotein that is regulated by phosphorylation through pathways that include protein kinase C cascades. We now extend this work using drugs selective for phosphatidylinositol 3-kinase (PI3K), protein kinase C, MEK1/2, p38 kinase, and Ca2+/calmodulin kinase II. We compare the drug effects on wild type DAT to the effects on 20 DAT mutants and a DAT deletion. PI3K and MEK1/2 modulators exert strong effects on DAT expression patterns and dopamine uptake Vmax. PKC principally modulates Vmax. Neither p38 nor Ca2+/calmodulin kinase II agents exert significant influences on wild type DAT. Several mutants and a DAT with an N-terminal deletion display alterations that interact with the effects of kinase modulators, especially S7A for PKC effects; T62A, S581A, and T612A for PI3K effects; and S12A and T595A mutants for MEK1/2 effects. 32P-Labeling studies confirm several of these effects of kinase pathway modulators on DAT phosphorylation. DAT expression and activities can be regulated by kinase cascades that require phosphoacceptor sites most concentrated in its N terminus. These results have a number of implications for DAT regulation and mandate caution in using DAT radioligand binding to infer changes in dopaminergic neuronal integrity after treatments that alter activities of these kinase pathways.
AB - The dopamine transporter (DAT) modulates dopamine neurotransmission and is a primary target for psychostimulant influences on locomotion and reward. Selective DAT expression by dopaminergic neurons has led to use of cocaine analog DAT radioligands to assess rates of progression of dopamine neuronal degeneration in Parkinson's disease. We have documented that DAT is a phosphoprotein that is regulated by phosphorylation through pathways that include protein kinase C cascades. We now extend this work using drugs selective for phosphatidylinositol 3-kinase (PI3K), protein kinase C, MEK1/2, p38 kinase, and Ca2+/calmodulin kinase II. We compare the drug effects on wild type DAT to the effects on 20 DAT mutants and a DAT deletion. PI3K and MEK1/2 modulators exert strong effects on DAT expression patterns and dopamine uptake Vmax. PKC principally modulates Vmax. Neither p38 nor Ca2+/calmodulin kinase II agents exert significant influences on wild type DAT. Several mutants and a DAT with an N-terminal deletion display alterations that interact with the effects of kinase modulators, especially S7A for PKC effects; T62A, S581A, and T612A for PI3K effects; and S12A and T595A mutants for MEK1/2 effects. 32P-Labeling studies confirm several of these effects of kinase pathway modulators on DAT phosphorylation. DAT expression and activities can be regulated by kinase cascades that require phosphoacceptor sites most concentrated in its N terminus. These results have a number of implications for DAT regulation and mandate caution in using DAT radioligand binding to infer changes in dopaminergic neuronal integrity after treatments that alter activities of these kinase pathways.
UR - http://www.scopus.com/inward/record.url?scp=0037805721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037805721&partnerID=8YFLogxK
U2 - 10.1074/jbc.M209584200
DO - 10.1074/jbc.M209584200
M3 - Article
C2 - 12660249
AN - SCOPUS:0037805721
SN - 0021-9258
VL - 278
SP - 20162
EP - 20170
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 22
ER -