Abstract
We examined the mechanisms involved in protein kinase C (PKC)-dependent down-regulation of dopamine transporter (DAT) activity and cell surface expression by treating heterologously expressing cells with the clathrin-mediated endocytosis inhibitor concanavalin A (Con A) or the cholesterol depleter/membrane raft disrupter methyl-β-cyclodextrin (MβC) prior to treatment with the PKC activator phorbol 12-myristate, 13-acetate (PMA). Con A blocked PMA-induced surface reductions of DAT but only partially inhibited down-regulation, while MβC partially blocked down-regulation but did not inhibit loss of cell surface DAT, demonstrating that PKC-induced DAT down-regulation occurs by a combination of trafficking and non-trafficking processes. Using density-gradient centrifugation, we found that DATs are distributed approximately equally between Triton-insoluble, cholesterol-rich membrane rafts and Triton-soluble non-raft membranes. DATs in both populations are present at the cell surface and are active for dopamine and cocaine binding. PMA-induced loss of cell surface DAT occurred only from non-raft populations, demonstrating that non-raft DATs are regulated by trafficking events and indicating the likelihood that the cholesterol-dependent non-trafficking regulatory mechanism occurs in rafts. PMA did not affect the DAT raft-non-raft distribution but stimulated the phosphorylation of DAT to a substantially greater level in rafts than non-rafts. These findings reveal a previously unknown role for cholesterol in DAT function and demonstrate the presence of distinct subcellular DAT populations that possess multiple regulatory differences that may impact dopaminergic neurotransmission.
Original language | English (US) |
---|---|
Pages (from-to) | 1683-1699 |
Number of pages | 17 |
Journal | Journal of Neurochemistry |
Volume | 105 |
Issue number | 5 |
DOIs | |
State | Published - Jun 2008 |
Externally published | Yes |
Keywords
- Cholesterol
- Dopamine
- Down-regulation
- Membrane rafts
- Trafficking
- Transport
ASJC Scopus subject areas
- Biochemistry
- Cellular and Molecular Neuroscience