TY - JOUR
T1 - Phase I and pharmacodynamic study of the topoisomerase I-inhibitor topotecan in patients with refractory acute leukemia
AU - Rowinsky, Eric K.
AU - Adjei, Alex
AU - Donehower, Ross C.
AU - Gore, Steven David
AU - Jones, Richard J.
AU - Burke, Philip J.
AU - Cheng, Yung Chi
AU - Grochow, Louise Barnett
AU - Kaufmann, Scott H.
PY - 1994/10
Y1 - 1994/10
N2 - Purpose: To determine the feasibility of escalating the hydrophilic topoisomerase I (topo I)-inhibitor topotecan (TPT) above myelosuppressive doses in adults with refractory or relapsed acute leukemias and to assess pharmacodynamic determinants of TPT action. Patients and Methods: Seventeen patients received 33 courses of TPT as a 5-day infusion at doses ranging from 0.70 to 2.7 mg/m2/d. Pharmacologic studies were performed to determine the TPT concentrations at steady-state (C(ss)) and to examine parameters in the patients' leukemic blasts ex vivo that may be related to TPT sensitivity, eg, topo I content, p-glycoprotein (Pgp) expression, and the inhibitory effects of relevant TPT concentrations on the growth of blast colonies in clonogenic assays relative to the range of TPT C(ss) values achieved. Results: Severe mucositis of the oropharynx and perianal tissues was intolerable at TPT doses greater than 2.1 mg/m2/d, the recommended dose for phase II studies in leukemia. One complete response (CR) in a patient with chronic myelogenous leukemia in blast crisis (CML-B) and one partial response (PR) in a patient with acute myelogenous leukemia (AML) were noted. Significant reductions in circulating blast-cell numbers occurred in all courses, and complete leukemia clearance from the peripheral blood, albeit transient, was noted in 11 courses. TPT C(ss) values ranged from 4.8 to 72.5 nmol/L. Colony-forming assays showed that the TPT LD90 (dose that inhibits the growth of leukemia blast colonies by 90%) values for blasts varied from 6 to 22 nmol/L, a range that overlapped with TPT C(ss) values. In view of these variations in TPT sensitivity, several aspects of topo I-mediated drug action were also studied. In 10 of 11 samples, the multidrug resistance (Mdr) modulator quinidine altered nuclear daunorubicin (DNR) accumulation and whole-cell TPT accumulation by less than 15%, which suggests that Pgp-mediated effects on drug efflux are insufficient to explain the fourfold range of TPT sensitivities in the colony-forming assays. Immunohistochemistry showed that topo I was expressed in all of the blasts from individual patients without detectable cell-to-cell heterogeneity in each marrow. Western blots indicated that topo I content varied over a 10-fold range. Although the sample size was small, topo I content appeared to be higher in acute lymphoblastic leukemia (ALL), intermediate in AML, and lower in CML-B. Topo I content did not appear to be related to the proliferative status of the blasts. Conclusion: These results indicate that substantial dose escalation of TPT above myelosuppressive doses reached in solid-tumor patients is feasible in patients with refractory leukemia, that biologically relevant TPT C(ss) values are achievable, and that further developmental trials are warranted.
AB - Purpose: To determine the feasibility of escalating the hydrophilic topoisomerase I (topo I)-inhibitor topotecan (TPT) above myelosuppressive doses in adults with refractory or relapsed acute leukemias and to assess pharmacodynamic determinants of TPT action. Patients and Methods: Seventeen patients received 33 courses of TPT as a 5-day infusion at doses ranging from 0.70 to 2.7 mg/m2/d. Pharmacologic studies were performed to determine the TPT concentrations at steady-state (C(ss)) and to examine parameters in the patients' leukemic blasts ex vivo that may be related to TPT sensitivity, eg, topo I content, p-glycoprotein (Pgp) expression, and the inhibitory effects of relevant TPT concentrations on the growth of blast colonies in clonogenic assays relative to the range of TPT C(ss) values achieved. Results: Severe mucositis of the oropharynx and perianal tissues was intolerable at TPT doses greater than 2.1 mg/m2/d, the recommended dose for phase II studies in leukemia. One complete response (CR) in a patient with chronic myelogenous leukemia in blast crisis (CML-B) and one partial response (PR) in a patient with acute myelogenous leukemia (AML) were noted. Significant reductions in circulating blast-cell numbers occurred in all courses, and complete leukemia clearance from the peripheral blood, albeit transient, was noted in 11 courses. TPT C(ss) values ranged from 4.8 to 72.5 nmol/L. Colony-forming assays showed that the TPT LD90 (dose that inhibits the growth of leukemia blast colonies by 90%) values for blasts varied from 6 to 22 nmol/L, a range that overlapped with TPT C(ss) values. In view of these variations in TPT sensitivity, several aspects of topo I-mediated drug action were also studied. In 10 of 11 samples, the multidrug resistance (Mdr) modulator quinidine altered nuclear daunorubicin (DNR) accumulation and whole-cell TPT accumulation by less than 15%, which suggests that Pgp-mediated effects on drug efflux are insufficient to explain the fourfold range of TPT sensitivities in the colony-forming assays. Immunohistochemistry showed that topo I was expressed in all of the blasts from individual patients without detectable cell-to-cell heterogeneity in each marrow. Western blots indicated that topo I content varied over a 10-fold range. Although the sample size was small, topo I content appeared to be higher in acute lymphoblastic leukemia (ALL), intermediate in AML, and lower in CML-B. Topo I content did not appear to be related to the proliferative status of the blasts. Conclusion: These results indicate that substantial dose escalation of TPT above myelosuppressive doses reached in solid-tumor patients is feasible in patients with refractory leukemia, that biologically relevant TPT C(ss) values are achievable, and that further developmental trials are warranted.
UR - http://www.scopus.com/inward/record.url?scp=0028090410&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028090410&partnerID=8YFLogxK
U2 - 10.1200/JCO.1994.12.10.2193
DO - 10.1200/JCO.1994.12.10.2193
M3 - Article
C2 - 7931489
AN - SCOPUS:0028090410
SN - 0732-183X
VL - 12
SP - 2193
EP - 2203
JO - Journal of Clinical Oncology
JF - Journal of Clinical Oncology
IS - 10
ER -