TY - JOUR
T1 - Phage Therapy for Mosquito Larval Control
T2 - a Proof-of-Principle Study
AU - Tikhe, Chinmay V.
AU - Dimopoulos, George
N1 - Funding Information:
This work was supported by NIH grant R21AI146398-02 and the Johns Hopkins Malaria Research Institute’s postdoctoral fellowship to C.V.T. and by the Bloomberg Philanthropies.
Publisher Copyright:
Copyright © 2022 Tikhe and Dimopoulos.
PY - 2022/12
Y1 - 2022/12
N2 - The mosquito microbiota has a profound impact on multiple biological processes ranging from reproduction to disease transmission. Interestingly, the adult mosquito microbiota is largely derived from the larval microbiota, which in turn is dependent on the microbiota of their water habitat. The larval microbiota not only plays a crucial role in larval development but also has a significant impact on the adult stage of the mosquito. By precisely engineering the larval microbiota, it is feasible to alter larval development and other life history traits of the mosquitoes. Bacteriophages, given their host specificity, can serve as a tool for modulating the microbiota. For this proof-of-principle study, we selected representative strains of five common Anopheles mosquito-associated bacterial genera, namely, Enterobacter, Serratia, Pseudomonas, Elizabethkingia, and Asaia. Our results with monoaxenic cultures showed that Anopheles larvae with Enterobacter and Pseudomonas displayed normal larval development with no significant mortality. However, monoaxenic Anopheles larvae with Elizabethkingia showed delayed larval development and higher mortality. Serratia and Asaia gnotobiotic larvae failed to develop past the first instar. We isolated and characterized three novel bacteriophages (EP1, SP1, and EKP1) targeting Enterobacter, Serratia, and Elizabethkingia, respectively, and utilized a previously characterized bacteriophage (GH1) targeting Pseudomonas to modulate larval water microbiota. Gnotobiotic Anopheles larvae with all five bacterial genera showed reduced survival and larval development with the addition of bacteriophages EP1 and GH1, targeting Enterobacter and Pseudomonas, respectively. The effect was synergistic when both EP1 and GH1 were added together. Our results demonstrate a novel application of bacteriophages for mosquito control. IMPORTANCE Mosquitoes are efficient vectors of multiple human and animal pathogens. The biology of mosquitoes is strongly affected by their associated microbiota. Because of the important role of the larval microbiota in mosquito biology, the microbiota can potentially serve as a target for altering mosquito life-history traits. Our study provides proof of principle that bacteriophages can be used as tools to modulate the mosquito larval habitat microbiota and can, in turn, affect larval development and survival. These results highlight the utility of bacteriophages in mosquito microbiota research and also provide a new potential mosquito control tool.
AB - The mosquito microbiota has a profound impact on multiple biological processes ranging from reproduction to disease transmission. Interestingly, the adult mosquito microbiota is largely derived from the larval microbiota, which in turn is dependent on the microbiota of their water habitat. The larval microbiota not only plays a crucial role in larval development but also has a significant impact on the adult stage of the mosquito. By precisely engineering the larval microbiota, it is feasible to alter larval development and other life history traits of the mosquitoes. Bacteriophages, given their host specificity, can serve as a tool for modulating the microbiota. For this proof-of-principle study, we selected representative strains of five common Anopheles mosquito-associated bacterial genera, namely, Enterobacter, Serratia, Pseudomonas, Elizabethkingia, and Asaia. Our results with monoaxenic cultures showed that Anopheles larvae with Enterobacter and Pseudomonas displayed normal larval development with no significant mortality. However, monoaxenic Anopheles larvae with Elizabethkingia showed delayed larval development and higher mortality. Serratia and Asaia gnotobiotic larvae failed to develop past the first instar. We isolated and characterized three novel bacteriophages (EP1, SP1, and EKP1) targeting Enterobacter, Serratia, and Elizabethkingia, respectively, and utilized a previously characterized bacteriophage (GH1) targeting Pseudomonas to modulate larval water microbiota. Gnotobiotic Anopheles larvae with all five bacterial genera showed reduced survival and larval development with the addition of bacteriophages EP1 and GH1, targeting Enterobacter and Pseudomonas, respectively. The effect was synergistic when both EP1 and GH1 were added together. Our results demonstrate a novel application of bacteriophages for mosquito control. IMPORTANCE Mosquitoes are efficient vectors of multiple human and animal pathogens. The biology of mosquitoes is strongly affected by their associated microbiota. Because of the important role of the larval microbiota in mosquito biology, the microbiota can potentially serve as a target for altering mosquito life-history traits. Our study provides proof of principle that bacteriophages can be used as tools to modulate the mosquito larval habitat microbiota and can, in turn, affect larval development and survival. These results highlight the utility of bacteriophages in mosquito microbiota research and also provide a new potential mosquito control tool.
KW - Anopheles
KW - bacteriophage
KW - bacteriophage therapy
KW - larval development
UR - http://www.scopus.com/inward/record.url?scp=85144438833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144438833&partnerID=8YFLogxK
U2 - 10.1128/mbio.03017-22
DO - 10.1128/mbio.03017-22
M3 - Article
C2 - 36445694
AN - SCOPUS:85144438833
SN - 2161-2129
VL - 13
JO - mBio
JF - mBio
IS - 6
ER -