TY - JOUR
T1 - Persistent neuronal activity in human prefrontal cortex links perception and action
AU - Haller, Matar
AU - Case, John
AU - Crone, Nathan E.
AU - Chang, Edward F.
AU - King-Stephens, David
AU - Laxer, Kenneth D.
AU - Weber, Peter B.
AU - Parvizi, Josef
AU - Knight, Robert T.
AU - Shestyuk, Avgusta Y.
N1 - Funding Information:
We thank the patients for their cooperation, patience, and interest—without their help this research would not be possible. We also thank J. N. Hoffman, A. Flinker, R. Ivry, K. Johnson and J. D. Wallis for providing valuable comments and suggestions during manuscript preparation, and K. L. Anderson, M. Cano and V. N. Rangarajan for help in data collection. This work was supported by the following grants: National Science Foundation (NSF) Graduate Research Fellowship DGE1106400 (M.H.), the National Institute of Mental Health F32MH75317 (A.S.), the National Institute of Neurological Disorders and Stroke (NINDS) R37NS21135 and the Nielsen Corporation (R.T.K.), NINDS R01NS078396 and NSF BCS1358907 (J.P.), NS40596 and NS088606 (N.E.C.), NIH R01DC012379 (E.F.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The MacBrain Face Stimulus Set was developed by Nim Tottenham (nlt7@columbia.edu) with support from the John D. and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. The dog–cat morph stimuli were provided by E. Miller from the Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology.
Funding Information:
This work was supported by the following grants: National Science Foundation (NSF) Graduate Research Fellowship DGE1106400 (M.H.), the National Institute of Mental Health F32MH75317 (A.S.), the National Institute of Neurological Disorders and Stroke (NINDS) R37NS21135 and the Nielsen Corporation (R.T.K.), NINDS R01NS078396 and NSF BCS1358907 (J.P.), NS40596 and NS088606 (N.E.C.), NIH R01DC012379 (E.F.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2017 The Author(s).
PY - 2018/1/1
Y1 - 2018/1/1
N2 - How do humans flexibly respond to changing environmental demands on a subsecond temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behaviour, yet the core mechanisms that translate sensory information into behaviour remain undefined. Using direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity (indexed by the broadband gamma signal) in 16 participants while they performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centred in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behaviour.
AB - How do humans flexibly respond to changing environmental demands on a subsecond temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behaviour, yet the core mechanisms that translate sensory information into behaviour remain undefined. Using direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity (indexed by the broadband gamma signal) in 16 participants while they performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centred in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behaviour.
UR - http://www.scopus.com/inward/record.url?scp=85042786814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042786814&partnerID=8YFLogxK
U2 - 10.1038/s41562-017-0267-2
DO - 10.1038/s41562-017-0267-2
M3 - Article
C2 - 29963646
AN - SCOPUS:85042786814
SN - 2397-3374
VL - 2
SP - 80
EP - 91
JO - Nature Human Behaviour
JF - Nature Human Behaviour
IS - 1
ER -