TY - JOUR
T1 - Patterns of somatic structural variation in human cancer genomes
AU - PCAWG Structural Variation Working Group
AU - PCAWG Consortium
AU - Li, Yilong
AU - Roberts, Nicola D.
AU - Wala, Jeremiah A.
AU - Shapira, Ofer
AU - Schumacher, Steven E.
AU - Kumar, Kiran
AU - Khurana, Ekta
AU - Waszak, Sebastian
AU - Korbel, Jan O.
AU - Haber, James E.
AU - Imielinski, Marcin
AU - Weischenfeldt, Joachim
AU - Beroukhim, Rameen
AU - Campbell, Peter J.
AU - Akdemir, Kadir C.
AU - Alvarez, Eva G.
AU - Baez-Ortega, Adrian
AU - Boutros, Paul C.
AU - Bowtell, David D.L.
AU - Brors, Benedikt
AU - Burns, Kathleen H.
AU - Chan, Kin
AU - Chen, Ken
AU - Cortés-Ciriano, Isidro
AU - Dueso-Barroso, Ana
AU - Dunford, Andrew J.
AU - Edwards, Paul A.
AU - Estivill, Xavier
AU - Etemadmoghadam, Dariush
AU - Feuerbach, Lars
AU - Lynn Fink, J.
AU - Frenkel-Morgenstern, Milana
AU - Garsed, Dale W.
AU - Gerstein, Mark
AU - Gordenin, Dmitry A.
AU - Haan, David
AU - Hess, Julian M.
AU - Hutter, Barbara
AU - Jones, David T.W.
AU - Ju, Young Seok
AU - Kazanov, Marat D.
AU - Klimczak, Leszek J.
AU - Koh, Youngil
AU - Lee, Eunjung Alice
AU - Lee, Jake June Koo
AU - Lynch, Andy G.
AU - Macintyre, Geoff
AU - Markowetz, Florian
AU - Martincorena, Iñigo
AU - Martinez-Fundichely, Alexander
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/2/6
Y1 - 2020/2/6
N2 - A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1–7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions—as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2–7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and—in liver cancer—frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.
AB - A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1–7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions—as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2–7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and—in liver cancer—frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.
UR - http://www.scopus.com/inward/record.url?scp=85078674086&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078674086&partnerID=8YFLogxK
U2 - 10.1038/s41586-019-1913-9
DO - 10.1038/s41586-019-1913-9
M3 - Article
C2 - 32025012
AN - SCOPUS:85078674086
SN - 0028-0836
VL - 578
SP - 112
EP - 121
JO - Nature
JF - Nature
IS - 7793
ER -