Parallel optimization of tumor model parameters for fast registration of brain tumor images

Evangelia I. Zacharaki, Cosmina S. Hogea, Dinggang Shen, George Biros, Christos Davatzikos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations


The motivation of this work is to register MR brain tumor images with a brain atlas. Such a registration method can make possible the pooling of data from different brain tumor patients into a common stereotaxic space, thereby enabling the construction of statistical brain tumor atlases. Moreover, it allows the mapping of neuroanatomical brain atlases into the patient's space, for segmenting brains and thus facilitating surgical or radiotherapy treatment planning. However, the methods developed for registration of normal brain images are not directly applicable to the registration of a normal atlas with a tumor-bearing image, due to substantial dissimilarity and lack of equivalent image content between the two images, as well as severe deformation or shift of anatomical structures around the tumor. Accordingly, a model that can simulate brain tissue death and deformation induced by the tumor is considered to facilitate the registration. Such tumor growth simulation models are usually initialized by placing a small seed in the normal atlas. The shape, size and location of the initial seed are critical for achieving topological equivalence between the atlas and patient's images. In this study, we focus on the automatic estimation of these parameters, pertaining to tumor simulation. In particular, we propose an objective function reflecting feature-based similarity and elastic stretching energy and optimize it with APPSPACK (Asynchronous Parallel Pattern Search), for achieving significant reduction of the computational cost. The results indicate that the registration accuracy is high in areas around the tumor, as well as in the healthy portion of the brain.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2008
Subtitle of host publicationImage Processing
StatePublished - 2008
Externally publishedYes
EventMedical Imaging 2008: Image Processing - San Diego, CA, United States
Duration: Feb 17 2008Feb 19 2008

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2008: Image Processing
Country/TerritoryUnited States
CitySan Diego, CA


  • Atlas-based segmentation
  • Brain tumor
  • Deformable registration
  • Tumor simulation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials


Dive into the research topics of 'Parallel optimization of tumor model parameters for fast registration of brain tumor images'. Together they form a unique fingerprint.

Cite this