Optimizing global COVID-19 vaccine allocation: An agent-based computational model of 148 countries

Qingfeng Li, Yajing Huang

Research output: Contribution to journalArticlepeer-review

Abstract

Background Based on the principles of equity and effectiveness, the World Health Organization and COVAX formulate vaccine allocation as a mathematical optimization problem. This study aims to solve the optimization problem using agent-based simulations. Methods We built open-sourced agent-based models to simulate virus transition among a demographically representative sample of 198 million people in 148 countries using advanced computational services. All countries continuing their current vaccine progress is defined as the baseline scenario. Comparison scenarios include achieving minimum vaccination rates and allocating vaccines based on pandemic levels. Findings The simulations are fitted using the pandemic data from 148 countries from January 2020 to June 2021. Under the baseline scenario, the world will add 24.36 million cases and 468,945 deaths during the projection period of three months. Inoculating at least 10%, 20%, and 26% of populations in all countries requires 1.12, 3.31, and 5.00 million additional vaccine doses every day, respectively. Achieving these benchmarks reduces new cases by 0.56, 2.74, and 3.32 million, respectively. If allocated by the current global distribution, 5.00 million additional vaccine doses will only avert 1.45 million new cases. If those 5.00 million vaccines are allocated based on projected cases in each country, the averted cases will increase more than six-fold to 9.20 million. Similar differences between allocation methods are observed in averted deaths. Conclusion The global distribution of COVID-19 vaccines can be optimized to achieve better outcomes in terms of both equity and effectiveness. Alternative vaccine allocation methods may avert several times more cases and deaths than the current global distribution. With reasonable requirements on additional vaccines, COVAX could adopt alternative allocation strategies that reduce cross-country inequity and save more lives.

Original languageEnglish (US)
Article numbere1010463
JournalPLoS computational biology
Volume18
Issue number9
DOIs
StatePublished - Sep 2022

ASJC Scopus subject areas

  • Genetics
  • Ecology, Evolution, Behavior and Systematics
  • Cellular and Molecular Neuroscience
  • Molecular Biology
  • Ecology
  • Computational Theory and Mathematics
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Optimizing global COVID-19 vaccine allocation: An agent-based computational model of 148 countries'. Together they form a unique fingerprint.

Cite this