TY - JOUR
T1 - Optimized adaptive enrichment designs for three-arm trials
T2 - learning which subpopulations benefit from different treatments
AU - Steingrimsson, Jon Arni
AU - Betz, Joshua
AU - Qian, Tianchen
AU - Rosenblum, Michael
N1 - Publisher Copyright:
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected].
PY - 2021/4/10
Y1 - 2021/4/10
N2 - We consider the problem of designing a confirmatory randomized trial for comparing two treatments versus a common control in two disjoint subpopulations. The subpopulations could be defined in terms of a biomarker or disease severity measured at baseline. The goal is to determine which treatments benefit which subpopulations. We develop a new class of adaptive enrichment designs tailored to solving this problem. Adaptive enrichment designs involve a preplanned rule for modifying enrollment based on accruing data in an ongoing trial. At the interim analysis after each stage, for each subpopulation, the preplanned rule may decide to stop enrollment or to stop randomizing participants to one or more study arms. The motivation for this adaptive feature is that interim data may indicate that a subpopulation, such as those with lower disease severity at baseline, is unlikely to benefit from a particular treatment while uncertainty remains for the other treatment and/or subpopulation. We optimize these adaptive designs to have the minimum expected sample size under power and Type I error constraints. We compare the performance of the optimized adaptive design versus an optimized nonadaptive (single stage) design. Our approach is demonstrated in simulation studies that mimic features of a completed trial of a medical device for treating heart failure. The optimized adaptive design has $25\%$ smaller expected sample size compared to the optimized nonadaptive design; however, the cost is that the optimized adaptive design has $8\%$ greater maximum sample size. Open-source software that implements the trial design optimization is provided, allowing users to investigate the tradeoffs in using the proposed adaptive versus standard designs.
AB - We consider the problem of designing a confirmatory randomized trial for comparing two treatments versus a common control in two disjoint subpopulations. The subpopulations could be defined in terms of a biomarker or disease severity measured at baseline. The goal is to determine which treatments benefit which subpopulations. We develop a new class of adaptive enrichment designs tailored to solving this problem. Adaptive enrichment designs involve a preplanned rule for modifying enrollment based on accruing data in an ongoing trial. At the interim analysis after each stage, for each subpopulation, the preplanned rule may decide to stop enrollment or to stop randomizing participants to one or more study arms. The motivation for this adaptive feature is that interim data may indicate that a subpopulation, such as those with lower disease severity at baseline, is unlikely to benefit from a particular treatment while uncertainty remains for the other treatment and/or subpopulation. We optimize these adaptive designs to have the minimum expected sample size under power and Type I error constraints. We compare the performance of the optimized adaptive design versus an optimized nonadaptive (single stage) design. Our approach is demonstrated in simulation studies that mimic features of a completed trial of a medical device for treating heart failure. The optimized adaptive design has $25\%$ smaller expected sample size compared to the optimized nonadaptive design; however, the cost is that the optimized adaptive design has $8\%$ greater maximum sample size. Open-source software that implements the trial design optimization is provided, allowing users to investigate the tradeoffs in using the proposed adaptive versus standard designs.
KW - Randomized clinical trial
KW - Treatment effect heterogeneity
UR - http://www.scopus.com/inward/record.url?scp=85102336200&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102336200&partnerID=8YFLogxK
U2 - 10.1093/biostatistics/kxz030
DO - 10.1093/biostatistics/kxz030
M3 - Article
C2 - 31420983
AN - SCOPUS:85102336200
SN - 1465-4644
VL - 22
SP - 283
EP - 297
JO - Biostatistics (Oxford, England)
JF - Biostatistics (Oxford, England)
IS - 2
ER -