Abstract
Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and G1 inhibitors we show that simulations of cell cycle populations and G1 arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.
Original language | English (US) |
---|---|
Pages (from-to) | 2131-2140 |
Number of pages | 10 |
Journal | Advances in Space Research |
Volume | 25 |
Issue number | 10 |
DOIs | |
State | Published - May 2000 |
ASJC Scopus subject areas
- Aerospace Engineering
- Astronomy and Astrophysics
- Geophysics
- Atmospheric Science
- Space and Planetary Science
- Earth and Planetary Sciences(all)