Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons

Stefano Ramat, R. John Leigh, David S. Zee, Lance M. Optican

Research output: Contribution to journalArticlepeer-review

81 Scopus citations


The human saccadic system is potentially unstable and may oscillate if the burst neurons, which generate saccades, are not inhibited by omnipause neurons. A previous study showed that combined saccade vergence movements can evoke oscillations in normal subjects. We set out to determine: 1) whether similar oscillations can be recorded during other paradigms associated with inhibition of omnipause neurons; 2) whether lesions of the fastigial nuclei disrupt such oscillations; and 3) whether such oscillations can be reproduced using a model based on the coupling of excitatory and inhibitory burst neurons. We recorded saccadic oscillations during vergence movements, combined saccade-vergence movements, vertical saccades, pure vergence and blinks in three normal subjects, and in a patient with saccadic hypermetria due to a surgical lesion affecting both fastigial nuclei. During combined saccade-vergence, normal subjects and the cerebellar patient developed small-amplitude (0.1-0.5°), high-frequency (27-35 Hz), conjugate horizontal saccadic oscillations. Oscillations of a similar amplitude and frequency occurred during blinks, pure vergence and vertical saccades. One normal subject could generate saccadic oscillations voluntarily (∼0.7° amplitude, 25 Hz) during sustained convergence. Previous models proposed that high-frequency eye oscillations produced by the saccadic system (saccadic oscillations), occur because of a delay in a negative feedback loop around high-gain, excitatory burst neurons in the brainstem. The feedback included the cerebellar fastigial nuclei. We propose another model that accounts for saccadic oscillations based on 1) coupling of excitatory and inhibitory burst neurons in the brainstem and 2) the hypothesis that burst neurons show post-inhibitory rebound discharge. When omnipause neurons are inhibited (as during saccades, saccade-vergence movements and blinks), this new model simulates oscillations with amplitudes and frequencies comparable to those in normal human subjects. The finding of saccadic oscillations in the cerebellar patient is compatible with the new model but not with the recent models including the fastigial nuclei in the classic negative-feedback loop model. Our model proposes a novel mechanism for generating oscillations in the oculomotor system and perhaps in other motor systems too.

Original languageEnglish (US)
Pages (from-to)89-106
Number of pages18
JournalExperimental Brain Research
Issue number1
StatePublished - Jan 2005


  • Brainstem
  • Burst neurons
  • Postinhibitory rebound discharge
  • Saccadic mechanism
  • Saccadic oscillations

ASJC Scopus subject areas

  • General Neuroscience


Dive into the research topics of 'Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons'. Together they form a unique fingerprint.

Cite this