Abstract
A novel numerical configuration has been devised in order to investigate active control of separated airfoil flows in a comprehensive and systematic manner. The configuration consists of a flat plate at zero degrees angle-of-attack in a freestream on which a separation bubble of prescribed size is created at a prescribed location through blowing and suction on the top boundary of the computational domain. Numerical simulations of this configuration show that these canonical separated airfoil flows exhibit three distinct characteristic time scales corresponding to the shear layer, the separation zone and the wake vortex shedding. The vortex dynamics associated with these distinct phenomena are described. Preliminary simulations of this flow subjected to zero-net-mass-flux perturbation are also presented.
Original language | English (US) |
---|---|
Pages | 10763-10774 |
Number of pages | 12 |
DOIs | |
State | Published - 2005 |
Externally published | Yes |
Event | 43rd AIAA Aerospace Sciences Meeting and Exhibit - Reno, NV, United States Duration: Jan 10 2005 → Jan 13 2005 |
Other
Other | 43rd AIAA Aerospace Sciences Meeting and Exhibit |
---|---|
Country/Territory | United States |
City | Reno, NV |
Period | 1/10/05 → 1/13/05 |
ASJC Scopus subject areas
- General Engineering