Numerical study of resonant interactions and flow control in a canonical separated flow

Rajat Mittal, Rupesh B. Kotapati, Louis N. Cattafesta

Research output: Contribution to conferencePaperpeer-review

Abstract

A novel numerical configuration has been devised in order to investigate active control of separated airfoil flows in a comprehensive and systematic manner. The configuration consists of a flat plate at zero degrees angle-of-attack in a freestream on which a separation bubble of prescribed size is created at a prescribed location through blowing and suction on the top boundary of the computational domain. Numerical simulations of this configuration show that these canonical separated airfoil flows exhibit three distinct characteristic time scales corresponding to the shear layer, the separation zone and the wake vortex shedding. The vortex dynamics associated with these distinct phenomena are described. Preliminary simulations of this flow subjected to zero-net-mass-flux perturbation are also presented.

Original languageEnglish (US)
Pages10763-10774
Number of pages12
DOIs
StatePublished - 2005
Externally publishedYes
Event43rd AIAA Aerospace Sciences Meeting and Exhibit - Reno, NV, United States
Duration: Jan 10 2005Jan 13 2005

Other

Other43rd AIAA Aerospace Sciences Meeting and Exhibit
Country/TerritoryUnited States
CityReno, NV
Period1/10/051/13/05

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Numerical study of resonant interactions and flow control in a canonical separated flow'. Together they form a unique fingerprint.

Cite this