Normalization in PET group comparison studies-The importance of a valid reference region

Per Borghammer, Kristjana Yr Jonsdottir, Paul Cumming, Karen Ostergaard, Kim Vang, Mahmoud Ashkanian, Manoucher Vafaee, Peter Iversen, Albert Gjedde

Research output: Contribution to journalArticlepeer-review

66 Scopus citations


Introduction: In positron emission tomography (PET) studies of cerebral blood flow (CBF) and metabolism, the large interindividual variation commonly is minimized by normalization to the global mean prior to statistical analysis. This approach requires that no between-group or between-state differences exist in the normalization region. Given the variability typical of global CBF and the practical limit on sample size, small group differences in global mean easily elude detection, but still bias the comparison, with profound consequences for the physiological interpretation of the results. Materials and methods: Quantitative [15O]H2O PET recordings of CBF were obtained in 45 healthy subjects (21-81 years) and 14 patients with hepatic encephalopathy (HE). With volume-of-interest (VOI) and voxel-based statistics, we conducted regression analyses of CBF as function of age in the healthy group, and compared the HE group to a subset of the controls. We compared absolute CBF values, and CBF normalized to the gray matter (GM) and white matter (WM) means. In additional simulation experiments, we manipulated the cortical values of 12 healthy subjects and compared these to unaltered control data. Results: In healthy aging, CBF was shown to be unchanged in WM and central regions. In contrast, with normalization to the GM mean, CBF displayed positive correlation with age in the central regions. Very similar artifactual increases were seen in the HE comparison and also in the simulation experiment. Conclusion: Ratio normalization to the global mean readily elevates CBF in unchanged regions when a systematic between-group difference exists in gCBF, also when this difference is below the detection threshold. We suggest that the routine normalization to the global mean in earlier studies resulted in spurious interpretations of perturbed CBF. Normalization to central WM yields less biased results in aging and HE and could potentially serve as a normalization reference region in other disorders as well.

Original languageEnglish (US)
Pages (from-to)529-540
Number of pages12
Issue number2
StatePublished - Apr 1 2008
Externally publishedYes


  • CBF
  • Glucose
  • Normalization
  • PET
  • Parkinson's disease
  • White matter

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Normalization in PET group comparison studies-The importance of a valid reference region'. Together they form a unique fingerprint.

Cite this