TY - JOUR
T1 - Nociceptin signaling involves a calcium-based depolarization in tetrahymena thermophila
AU - Lampert, Thomas
AU - Nugent, Cheryl
AU - Weston, John
AU - Braun, Nathanael
AU - Kuruvilla, Heather
PY - 2013
Y1 - 2013
N2 - Tetrahymena thermophila are free-living, ciliated eukaryotes. Their behavioral response to stimuli is well characterized and easily observable, since cells swim toward chemoattractants and avoid chemorepellents. Chemoattractant responses involve increased swim speed or a decreased change in swim direction, while chemorepellent signaling involves ciliary reversal, which causes the organism to jerk back and forth, swim in small circles, or spin in an attempt to get away from the repellent. Many food sources, such as proteins, are chemoattractants for these organisms, while a variety of compounds are repellents. Repellents in nature are thought to come from the secretions of predators or from ruptured organisms, which may serve as "danger" signals. Interestingly, several peptides involved in vertebrate pain signaling are chemorepellents in Tetrahymena, including substances P, ACTH, PACAP, VIP, and nociceptin. Here, we characterize the response of Tetrahymena thermophila to three different isoforms of nociceptin. We find that G-protein inhibitors and tyrosine kinase inhibitors do not affect nociceptin avoidance. However, the calcium chelator, EGTA, and the SERCA calcium ATPase inhibitor, thapsigargin, both inhibit nociceptin avoidance, implicating calcium in avoidance. This result is confirmed by electrophysiology studies which show that 50 M nociceptin-NH2 causes a sustained depolarization of approximately 40 mV, which is eliminated by the addition of extracellular EGTA.
AB - Tetrahymena thermophila are free-living, ciliated eukaryotes. Their behavioral response to stimuli is well characterized and easily observable, since cells swim toward chemoattractants and avoid chemorepellents. Chemoattractant responses involve increased swim speed or a decreased change in swim direction, while chemorepellent signaling involves ciliary reversal, which causes the organism to jerk back and forth, swim in small circles, or spin in an attempt to get away from the repellent. Many food sources, such as proteins, are chemoattractants for these organisms, while a variety of compounds are repellents. Repellents in nature are thought to come from the secretions of predators or from ruptured organisms, which may serve as "danger" signals. Interestingly, several peptides involved in vertebrate pain signaling are chemorepellents in Tetrahymena, including substances P, ACTH, PACAP, VIP, and nociceptin. Here, we characterize the response of Tetrahymena thermophila to three different isoforms of nociceptin. We find that G-protein inhibitors and tyrosine kinase inhibitors do not affect nociceptin avoidance. However, the calcium chelator, EGTA, and the SERCA calcium ATPase inhibitor, thapsigargin, both inhibit nociceptin avoidance, implicating calcium in avoidance. This result is confirmed by electrophysiology studies which show that 50 M nociceptin-NH2 causes a sustained depolarization of approximately 40 mV, which is eliminated by the addition of extracellular EGTA.
UR - http://www.scopus.com/inward/record.url?scp=84879191683&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879191683&partnerID=8YFLogxK
U2 - 10.1155/2013/573716
DO - 10.1155/2013/573716
M3 - Article
C2 - 23737806
AN - SCOPUS:84879191683
SN - 1687-9767
VL - 2013
JO - International Journal of Peptides
JF - International Journal of Peptides
M1 - 573716
ER -