Abstract
Intracerebral haemorrhage (ICH) is an acute neurological disorder without effective treatment. Mechanisms of acute brain injury after ICH remain to be clarified. Although a few studies suggested a detrimental role for the gelatinase matrix metalloproteinase (MMP)-9 in ICH, the relationship between MMP-9 activity and acute brain injury after ICH is not determined. In this study, we first examined the expression of gelatinases in vivo using a collagenase-induced mouse model of ICH. Gel zymography revealed that MMP-9 was activated and upregulated after ICH. In situ zymography showed that gelatinase activity was mostly co-localized with neurons and endothelial cells of the blood vessel matrix. Inhibition with a broad-spectrum metalloproteinase inhibitor GM6001 (100 mg/kg) ameliorated dysregulated gelatinase activity, neutrophil infiltration, production of oxidative stress, brain oedema and degenerating neurons. Functional improvement and a decrease in injury volume were also observed. We provide evidence that MMP-9 may play a deleterious role in acute brain injury within the first 3 days after ICH. Blockade of MMP activity during this critical period may have efficacy as a therapeutic strategy for the treatment of acute brain injury after ICH.
Original language | English (US) |
---|---|
Pages (from-to) | 1622-1633 |
Number of pages | 12 |
Journal | Brain |
Volume | 128 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2005 |
Keywords
- Intracerebral haemorrhage
- Matrix metalloproteinase
- Mouse
- Neutrophil
- Reactive oxygen species
- Stroke
ASJC Scopus subject areas
- Clinical Neurology