Neuron selection for decoding dexterous finger movements

Kevin Kahn, Marc Sheiber, Nitish Thakor, Sridevi V. Sarma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Many brain machine interfaces (BMI) seek to use the activity from hundreds of simultaneously recorded neurons to reconstruct an individual's kinematics. However, many of these neurons are not task related since there is no way to surgically target those neurons. This causes model based decoding to suffer easily from over-fitting on noisy unrelated neurons. Previous methods, such as correlation analysis and sensitivity analysis, seek to select neurons based on which reduced order model best matches the ensemble model and thus does not worry about over fitting. To address this issue, this paper presents a new method, cross model validation, that ranks neuron importance on the neuron model's ability to generalize well to data from correct movements and poorly to data from incorrect movements. This method attempts to highlight the neurons that are able to distinguish between movements the best and decode accurately. Selecting neurons using cross model validation scores as opposed to randomly selecting them can increase decoding accuracy up to 2.5 times or by 44%. These results showcase the importance of neuron selection in decoding and the ability of cross model validation in discerning each neuron's utility in decoding.

Original languageEnglish (US)
Title of host publication33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Pages4605-4608
Number of pages4
DOIs
StatePublished - Dec 26 2011
Event33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States
Duration: Aug 30 2011Sep 3 2011

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Country/TerritoryUnited States
CityBoston, MA
Period8/30/119/3/11

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Neuron selection for decoding dexterous finger movements'. Together they form a unique fingerprint.

Cite this