TY - JOUR
T1 - Neuroimaging in cerebral palsy
T2 - Patterns of brain dysgenesis and injury
AU - Hoon, Alexander H.
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2005/12
Y1 - 2005/12
N2 - Despite advances in obstetric and neonatal care, the overall prevalence of cerebral palsy has remained stable, supporting the belief that pathogenesis is primarily due to prenatal brain dysgenesis and injury. Neuroimaging studies have consistently shown abnormalities in 70% to 90% of affected children, facilitating clinical classification into groups with early brain malformations, white-matter injury, neonatal encephalopathies, and a heterogeneous group of postnatally acquired disorders. White-matter injury, well seen on conventional magnetic resonance imaging (MRI), is the leading cause of cerebral palsy in children born preterm. As many as 20% of very low birthweight infants have cystic and/or diffuse white-matter injury, termed periventricular leukomalacia, with evidence of associated pathology in other cortical and subcortical structures. In the group with acute, term perinatal pathology, a variety of imaging modalities, in addition to MRI, have diagnostic utility. In general, when added to conventional MRI, advanced techniques, such as diffusion tensor imaging, diffusion-weighted imaging, and magnetic resonance spectroscopy, provide a more complete picture of structural and functional brain abnormalities. The results have led to improved understanding of pathogenesis, especially in regard to periventricular leukomalacia and hypoxic-ischemic encephalopathy, This information might lead to interventions preventing brain injury in preterm infants and asphyxiated term newborns.
AB - Despite advances in obstetric and neonatal care, the overall prevalence of cerebral palsy has remained stable, supporting the belief that pathogenesis is primarily due to prenatal brain dysgenesis and injury. Neuroimaging studies have consistently shown abnormalities in 70% to 90% of affected children, facilitating clinical classification into groups with early brain malformations, white-matter injury, neonatal encephalopathies, and a heterogeneous group of postnatally acquired disorders. White-matter injury, well seen on conventional magnetic resonance imaging (MRI), is the leading cause of cerebral palsy in children born preterm. As many as 20% of very low birthweight infants have cystic and/or diffuse white-matter injury, termed periventricular leukomalacia, with evidence of associated pathology in other cortical and subcortical structures. In the group with acute, term perinatal pathology, a variety of imaging modalities, in addition to MRI, have diagnostic utility. In general, when added to conventional MRI, advanced techniques, such as diffusion tensor imaging, diffusion-weighted imaging, and magnetic resonance spectroscopy, provide a more complete picture of structural and functional brain abnormalities. The results have led to improved understanding of pathogenesis, especially in regard to periventricular leukomalacia and hypoxic-ischemic encephalopathy, This information might lead to interventions preventing brain injury in preterm infants and asphyxiated term newborns.
UR - http://www.scopus.com/inward/record.url?scp=33644557379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644557379&partnerID=8YFLogxK
U2 - 10.1177/08830738050200120201
DO - 10.1177/08830738050200120201
M3 - Article
C2 - 16417839
AN - SCOPUS:33644557379
SN - 0883-0738
VL - 20
SP - 936
EP - 939
JO - Journal of child neurology
JF - Journal of child neurology
IS - 12
ER -