Needle deflection estimation using fusion of electromagnetic trackers

H. Sadjadi, K. Hashtrudi-Zaad, G. Fichtinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a needle deflection estimation method to compensate for needle bending during insertion into deformable tissue. We combine a kinematic needle deflection estimation model, electromagnetic (EM) trackers, and a Kalman filter (KF). We reduce the impact of error from the needle deflection estimation model by using the fusion of two EM trackers to report the approximate needle tip position in real-time. One reliable EM tracker is installed on the needle base, and estimates the needle tip position using the kinematic needle deflection model. A smaller but much less reliable EM tracker is installed on the needle tip, and estimates the needle tip position through direct noisy measurements. Using a KF, the sensory information from both EM trackers is fused to provide a reliable estimate of the needle tip position with much reduced variance in the estimation error. We then implement this method to compensate for needle deflection during simulated prostate cancer brachytherapy needle insertion. At a typical maximum insertion depth of 15 cm, needle tip mean estimation error was reduced from 2.39 mm to 0.31 mm, which demonstrates the effectiveness of our method, offering a clinically practical solution.

Original languageEnglish (US)
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Pages952-955
Number of pages4
DOIs
StatePublished - 2012
Externally publishedYes
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sep 1 2012

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period8/28/129/1/12

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Needle deflection estimation using fusion of electromagnetic trackers'. Together they form a unique fingerprint.

Cite this