TY - JOUR
T1 - Native store-operated Ca2+ influx requires the channel function of Orai 1 and TRPC1
AU - Kim, Min Seuk
AU - Zeng, Weizhong
AU - Yuan, Joseph P.
AU - Shin, Dong Min
AU - Worley, Paul F.
AU - Muallem, Shmuel
PY - 2009/4/10
Y1 - 2009/4/10
N2 - With the discovery of STIM1 and Orai1 and gating of both TRPC and Orai1 channels by STIM1, a central question is the role of each of the channels in the native store-operated Ca2+ influx (SOCs). Here, we used a strategy of knockdown of Orai1 and of TRPC1 alone and in combination and rescue by small interfering RNA-protected mutants (sm) of smOrai1 and smTRPC1 to demonstrate that in human embryonic kidney (HEK) cells, rescue ofSOCsrequired co-transfection of low levels of both smOrai1 and smTRPC1. The pore mutant Orai1(E106Q) failed to rescue the SOCs in the presence or absence of TRPC1 and, surprisingly, the pore mutant TRPC1(F562A) failed to rescue the SOCs in the presence or absence of Orai1. TRPC1 is gated by electrostatic interaction between TRPC1(D639D,D640D) with STIM1(K684K, K685K). Strikingly, the channel-dead TRPC1(D639K,D640K) that can be rescued only by the STIM1(K684E,K685E) mutant could restore SOCs only when expressed with Orai1 and STIM1(K684E,K685E). Accordingly, we found a mutual requirement of Orai1 and TRPC1 for their interaction with the native STIM1 in HEK cells. By contrast, SOC and the CRAC current in Jurkat cells were inhibited by knockdown of Orai1 but were not influenced by knockdown on TRPC1 or TRPC3. These findings define the molecular makeup of the native SOCs in HEK cells and the role of a STIM1-Orai1-TRPC1 complex in SOC activity.
AB - With the discovery of STIM1 and Orai1 and gating of both TRPC and Orai1 channels by STIM1, a central question is the role of each of the channels in the native store-operated Ca2+ influx (SOCs). Here, we used a strategy of knockdown of Orai1 and of TRPC1 alone and in combination and rescue by small interfering RNA-protected mutants (sm) of smOrai1 and smTRPC1 to demonstrate that in human embryonic kidney (HEK) cells, rescue ofSOCsrequired co-transfection of low levels of both smOrai1 and smTRPC1. The pore mutant Orai1(E106Q) failed to rescue the SOCs in the presence or absence of TRPC1 and, surprisingly, the pore mutant TRPC1(F562A) failed to rescue the SOCs in the presence or absence of Orai1. TRPC1 is gated by electrostatic interaction between TRPC1(D639D,D640D) with STIM1(K684K, K685K). Strikingly, the channel-dead TRPC1(D639K,D640K) that can be rescued only by the STIM1(K684E,K685E) mutant could restore SOCs only when expressed with Orai1 and STIM1(K684E,K685E). Accordingly, we found a mutual requirement of Orai1 and TRPC1 for their interaction with the native STIM1 in HEK cells. By contrast, SOC and the CRAC current in Jurkat cells were inhibited by knockdown of Orai1 but were not influenced by knockdown on TRPC1 or TRPC3. These findings define the molecular makeup of the native SOCs in HEK cells and the role of a STIM1-Orai1-TRPC1 complex in SOC activity.
UR - http://www.scopus.com/inward/record.url?scp=65649087122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65649087122&partnerID=8YFLogxK
U2 - 10.1074/jbc.M808097200
DO - 10.1074/jbc.M808097200
M3 - Article
C2 - 19228695
AN - SCOPUS:65649087122
SN - 0021-9258
VL - 284
SP - 9733
EP - 9741
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 15
ER -