MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis

Juliana Cazarin, Rachel E. DeRollo, Siti Noor Ain Binti Ahmad Shahidan, Jamison B. Burchett, Daniel Mwangi, Saikumari Krishnaiah, Annie L. Hsieh, Zandra E. Walton, Rebekah Brooks, Stephano S. Mello, Aalim M. Weljie, Chi V. Dang, Brian J. Altman

Research output: Contribution to journalArticlepeer-review

Abstract

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.

Original languageEnglish (US)
Article numbere1010904
JournalPLoS genetics
Volume19
Issue number8 August
DOIs
StatePublished - Aug 28 2023

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint

Dive into the research topics of 'MYC disrupts transcriptional and metabolic circadian oscillations in cancer and promotes enhanced biosynthesis'. Together they form a unique fingerprint.

Cite this