TY - JOUR
T1 - Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis
AU - Yuan, Guoxiang
AU - Peng, Ying Jie
AU - Reddy, Vaddi Damodara
AU - Makarenko, Vladislav V.
AU - Nanduri, Jayasri
AU - Khan, Shakil A.
AU - Garcia, Joseph A.
AU - Kumar, Ganesh K.
AU - Semenza, Gregg L.
AU - Prabhakar, Nanduri R.
PY - 2013/5/7
Y1 - 2013/5/7
N2 - Breathing and blood pressure are under constant homeostatic regulation to maintain optimal oxygen delivery to the tissues. Chemosensory reflexes initiated by the carotid body and catecholamine secretion from the adrenal medulla are the principalmechanisms for maintaining respiratory and cardiovascular homeostasis; however, the underlying molecular mechanisms are not known. Here, we report that balanced activity of hypoxia-inducible factor-1 (HIF-1) and HIF-2 is critical for oxygen sensing by the carotid body and adrenalmedulla, and for their control of cardio-respiratory function. In Hif2α+/- mice, partial HIF-2α deficiency increased levels of HIF-1α and NADPH oxidase 2, leading to an oxidized intracellular redox state, exaggerated hypoxic sensitivity, and cardio-respiratory abnormalities, which were reversed by treatment with a HIF-1α inhibitor or a superoxide anion scavenger. Conversely, in Hif1α+/- mice, partial HIF-1α deficiency increased levels of HIF-2α and superoxide dismutase 2, leading to a reduced intracellular redox state, blunted oxygen sensing, and impaired carotid body and ventilatory responses to chronic hypoxia, which were corrected by treatment with a HIF-2α inhibitor. None of the abnormalities observed in Hif1α+/- mice or Hif2α+/- mice were observed in Hif1α+/-;Hif2α+/- mice. These observations demonstrate that redox balance, which is determined bymutual antagonism between HIF-α isoforms, establishes the set point for hypoxic sensing by the carotid body and adrenal medulla, and is required for maintenance of cardiorespiratory homeostasis.
AB - Breathing and blood pressure are under constant homeostatic regulation to maintain optimal oxygen delivery to the tissues. Chemosensory reflexes initiated by the carotid body and catecholamine secretion from the adrenal medulla are the principalmechanisms for maintaining respiratory and cardiovascular homeostasis; however, the underlying molecular mechanisms are not known. Here, we report that balanced activity of hypoxia-inducible factor-1 (HIF-1) and HIF-2 is critical for oxygen sensing by the carotid body and adrenalmedulla, and for their control of cardio-respiratory function. In Hif2α+/- mice, partial HIF-2α deficiency increased levels of HIF-1α and NADPH oxidase 2, leading to an oxidized intracellular redox state, exaggerated hypoxic sensitivity, and cardio-respiratory abnormalities, which were reversed by treatment with a HIF-1α inhibitor or a superoxide anion scavenger. Conversely, in Hif1α+/- mice, partial HIF-1α deficiency increased levels of HIF-2α and superoxide dismutase 2, leading to a reduced intracellular redox state, blunted oxygen sensing, and impaired carotid body and ventilatory responses to chronic hypoxia, which were corrected by treatment with a HIF-2α inhibitor. None of the abnormalities observed in Hif1α+/- mice or Hif2α+/- mice were observed in Hif1α+/-;Hif2α+/- mice. These observations demonstrate that redox balance, which is determined bymutual antagonism between HIF-α isoforms, establishes the set point for hypoxic sensing by the carotid body and adrenal medulla, and is required for maintenance of cardiorespiratory homeostasis.
KW - Blood pressure regulation
KW - Nox2
KW - Reactive oxygen species
KW - Sod2
KW - Ventilatory adaptation
UR - http://www.scopus.com/inward/record.url?scp=84877347155&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84877347155&partnerID=8YFLogxK
U2 - 10.1073/pnas.1305961110
DO - 10.1073/pnas.1305961110
M3 - Article
C2 - 23610397
AN - SCOPUS:84877347155
SN - 0027-8424
VL - 110
SP - E1788-E1796
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 19
ER -