TY - JOUR
T1 - MUSSEL
T2 - Enhanced Bayesian polygenic risk prediction leveraging information across multiple ancestry groups
AU - 23andMe Research Team
AU - Jin, Jin
AU - Zhan, Jianan
AU - Zhang, Jingning
AU - Zhao, Ruzhang
AU - O'Connell, Jared
AU - Jiang, Yunxuan
AU - Aslibekyan, Stella
AU - Auton, Adam
AU - Babalola, Elizabeth
AU - Bell, Robert K.
AU - Bielenberg, Jessica
AU - Bryc, Katarzyna
AU - Bullis, Emily
AU - Coker, Daniella
AU - Cuellar Partida, Gabriel
AU - Dhamija, Devika
AU - Das, Sayantan
AU - Elson, Sarah L.
AU - Eriksson, Nicholas
AU - Filshtein, Teresa
AU - Fitch, Alison
AU - Fletez-Brant, Kipper
AU - Fontanillas, Pierre
AU - Freyman, Will
AU - Granka, Julie M.
AU - Heilbron, Karl
AU - Hernandez, Alejandro
AU - Hicks, Barry
AU - Hinds, David A.
AU - Jewett, Ethan M.
AU - Kukar, Katelyn
AU - Kwong, Alan
AU - Lin, Keng Han
AU - Llamas, Bianca A.
AU - Lowe, Maya
AU - McCreight, Jey C.
AU - McIntyre, Matthew H.
AU - Micheletti, Steven J.
AU - Moreno, Meghan E.
AU - Nandakumar, Priyanka
AU - Nguyen, Dominique T.
AU - Noblin, Elizabeth S.
AU - Petrakovitz, Aaron A.
AU - Poznik, G. David
AU - Reynoso, Alexandra
AU - Schumacher, Morgan
AU - Shastri, Anjali J.
AU - Shelton, Janie F.
AU - Wojcik, Genevieve
AU - Chatterjee, Nilanjan
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/4/10
Y1 - 2024/4/10
N2 - Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.
AB - Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.
KW - Bayesian hierarchical modeling
KW - effect-size distribution
KW - ensemble learning
KW - genome-wide association studies
KW - multi-ancestry polygenic prediction
KW - polygenic architecture
UR - http://www.scopus.com/inward/record.url?scp=85189943598&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85189943598&partnerID=8YFLogxK
U2 - 10.1016/j.xgen.2024.100539
DO - 10.1016/j.xgen.2024.100539
M3 - Article
C2 - 38604127
AN - SCOPUS:85189943598
SN - 2666-979X
VL - 4
JO - Cell Genomics
JF - Cell Genomics
IS - 4
M1 - 100539
ER -