Multivariate analysis and visualization of splicing correlations in single-gene transcriptomes

Mark C. Emerick, Giovanni Parmigiani, William S. Agnew

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Background: RNA metabolism, through 'combinatorial splicing', can generate enormous structural diversity in the proteome. Alternative domains may interact, however, with unpredictable phenotypic consequences, necessitating integrated RNA-level regulation of molecular composition. Splicing correlations within transcripts of single genes provide valuable clues to functional relationships among molecular domains as well as genomic targets for higher-order splicing regulation. Results: We present tools to visualize complex splicing patterns in full-length cDNA libraries. Developmental changes in pair-wise correlations are presented vectorially in 'clock plots' and linkage grids. Higher-order correlations are assessed statistically through Monte Carlo analysis of a log-linear model with an empirical-Bayes estimate of the true probabilities of observed and unobserved splice forms. Log-linear coefficients are visualized in a 'spliceprint,' a signature of splice correlations in the transcriptome. We present two novel metrics: the linkage change index, which measures the directional change in pair-wise correlation with tissue differentiation, and the accuracy index, a very simple goodness-of-fit metric that is more sensitive than the integrated squared error when applied to sparsely populated tables, and unlike chi-square, does not diverge at low variance. Considerable attention is given to sparse contingency tables, which are inherent to single-gene libraries. Conclusion: Patterns of splicing correlations are revealed, which span a broad range of interaction order and change in development. The methods have a broad scope of applicability, beyond the single gene - including, for example, multiple gene interactions in the complete transcriptome.

Original languageEnglish (US)
Article number16
JournalBMC Bioinformatics
StatePublished - 2007
Externally publishedYes

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics


Dive into the research topics of 'Multivariate analysis and visualization of splicing correlations in single-gene transcriptomes'. Together they form a unique fingerprint.

Cite this