TY - GEN
T1 - Multimodel quantitative analysis of somatosensory evoked potentials after cardiac arrest with graded hypothermia
AU - Young, Leanne Moon
AU - Choudhary, Rishabh
AU - Jia, Xiaofeng
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10/13
Y1 - 2016/10/13
N2 - Cardiac arrest (CA) is one of the most prominent causes of morbidity and mortality in adults. Therapeutic hypothermia (TH) is a recommended treatment to improve survival and functional outcome following CA, however, it is unclear what degree of TH is most beneficial. It has been suggested that TH of 33°C provides no survival or outcome benefits over TH of 36°C. Additionally, there is a lack of verified objective quantitative prognostic tools for comatose CA patients under TH. In this study, we calculated three quantitative markers of somatosensory evoked potentials (SSEP) to examine their potential to track recovery in the early period following CA under graded TH. A total of 16 rats were randomly divided among 4 temperature groups (n=4/group): normothermia (N0, 36.5-37.5°C), hypothermia 1 (H1, 30-32°C), hypothermia 2 (H2, 32-34°C) and hypothermia 3 (H3, 34-36°C). All rats underwent a 15min baseline SSEP recording followed by 9min asphyxial-CA, resulting in severe cerebral injury, and immediate temperature management following resuscitation for 6 hours. SSEP recordings were maintained in 15 min intervals from 30min-4hrs after resuscitation. The N10 amplitude, N10 latency and quantitative SSEP phase space area (qSSEP-PSA) were calculated for the early recovery period and normalized to their respective baselines. Functional recovery was determined by the neurological deficit scale (NDS). N10 amplitude was significantly larger in H1, H2 and H3 compared to N0. N10 latency was significantly longer in H1 than all temperature groups and all hypothermia groups had significantly longer latencies than N0. qSSEP-PSA had significantly better recovery in H1 and H2 than N0. Animals with good outcome (72hr NDS>50) had better recovery of all markers. N10 amplitude was significantly correlated with N10 latency and qSSEP-PSA. The results importantly demonstrate that quantified SSEPs have the potential to objectively track recovery following CA with graded TH.
AB - Cardiac arrest (CA) is one of the most prominent causes of morbidity and mortality in adults. Therapeutic hypothermia (TH) is a recommended treatment to improve survival and functional outcome following CA, however, it is unclear what degree of TH is most beneficial. It has been suggested that TH of 33°C provides no survival or outcome benefits over TH of 36°C. Additionally, there is a lack of verified objective quantitative prognostic tools for comatose CA patients under TH. In this study, we calculated three quantitative markers of somatosensory evoked potentials (SSEP) to examine their potential to track recovery in the early period following CA under graded TH. A total of 16 rats were randomly divided among 4 temperature groups (n=4/group): normothermia (N0, 36.5-37.5°C), hypothermia 1 (H1, 30-32°C), hypothermia 2 (H2, 32-34°C) and hypothermia 3 (H3, 34-36°C). All rats underwent a 15min baseline SSEP recording followed by 9min asphyxial-CA, resulting in severe cerebral injury, and immediate temperature management following resuscitation for 6 hours. SSEP recordings were maintained in 15 min intervals from 30min-4hrs after resuscitation. The N10 amplitude, N10 latency and quantitative SSEP phase space area (qSSEP-PSA) were calculated for the early recovery period and normalized to their respective baselines. Functional recovery was determined by the neurological deficit scale (NDS). N10 amplitude was significantly larger in H1, H2 and H3 compared to N0. N10 latency was significantly longer in H1 than all temperature groups and all hypothermia groups had significantly longer latencies than N0. qSSEP-PSA had significantly better recovery in H1 and H2 than N0. Animals with good outcome (72hr NDS>50) had better recovery of all markers. N10 amplitude was significantly correlated with N10 latency and qSSEP-PSA. The results importantly demonstrate that quantified SSEPs have the potential to objectively track recovery following CA with graded TH.
UR - http://www.scopus.com/inward/record.url?scp=85009089384&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009089384&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2016.7591079
DO - 10.1109/EMBC.2016.7591079
M3 - Conference contribution
C2 - 28268685
AN - SCOPUS:85009089384
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 1846
EP - 1849
BT - 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Y2 - 16 August 2016 through 20 August 2016
ER -